Flood forecasting on the mountainous river basin by using the most advanced Multi-parameter radars

利用最先进的多参数雷达进行山区流域洪水预报

基本信息

  • 批准号:
    21J15249
  • 负责人:
  • 金额:
    $ 0.96万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2021
  • 资助国家:
    日本
  • 起止时间:
    2021-04-28 至 2023-03-31
  • 项目状态:
    已结题

项目摘要

Guerrilla Heavy Rainfall (GHR), a type of localized heavy rainfall, has caused flash flood disasters in Japan. Predicting the risk of localized heavy rainfall, especially GHR, is crucial for preventing hydro-meteorological disasters and minimizing damage to human life and property. Research in meteorology and hydrology has been conducted to develop methods for accurately predicting and alerting flash floods. Meteorologically, the quantitative risk prediction method was developed for predicting the risk triggered by GHR based on the physical mechanism. By multiple Doppler radar analysis, the variables were estimated. Then, the correlation between the predicted risk level and the variables was founded on the multilinear regression. Hydrologically, flash flood guidance (FFG) was considered to determine the criteria for whether flash floods occur. FFG is the amount of precipitation needed in a specific period to initiate flooding in the watershed. FFG was estimated based on Threshold Runoff (TR) and Soil moisture Deficit (SD) using the Storm Water Management Model (SWMM). By using topographic and meteorological data, the FFG was estimated on the mixed land use consisting of the rural and urban areas. So, once the FFG has been established, the FFG can issue flash flood warnings without running the entire hydro-meteorological process in the region where flash floods frequently occur. To prevent flash floods, flash flood alerts should be taking into account both the quantitative risk prediction (meteorology) and flash flood warnings (hydrology).
游击性强降雨是一种局部性强降雨,在日本造成了山洪灾害。预测局地强降水,尤其是GHR的风险,对于预防水文气象灾害和最大限度地减少对人类生命财产的损失至关重要。开展了气象学和水文学研究,以制定准确预测山洪暴发和发出警报的方法。从气象学的角度出发,建立了基于物理机制的GHR触发风险定量预测方法。通过多多普勒雷达分析,估计变量。然后,预测的风险水平和变量之间的相关性建立的多元线性回归。从水文学上讲,山洪指导(FFG)被认为是确定山洪是否发生的标准。FFG是在特定时期内引发流域洪水所需的降水量。基于阈值径流(TR)和土壤水分亏缺(SD),使用暴雨水管理模型(SWMM)估计FFG。利用地形和气象资料,估算了城乡混合土地利用模式下的森林覆盖率。因此,一旦建立了FFG,FFG就可以在山洪频繁发生的地区发布山洪警报,而无需运行整个水文气象过程。为防止山洪暴发,山洪警报应同时考虑定量风险预测(气象学)和山洪警报(水文学)。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Investigation on the effectiveness of Life Cycle of the Guerrilla heavy rainfall for the quantitative prediction method
游击暴雨生命周期定量预测方法有效性研究
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomoyasu Maekawa;Hwayeon Kim and Eiichi Nakakita
  • 通讯作者:
    Hwayeon Kim and Eiichi Nakakita
ADVANCES IN THE QUANTITATIVE RISK PREDICTION FOR IMPROVING THE ACCURACY ON THE GUERRILLA HEAVY RAINFALL
提高游击性强降雨风险定量预报的进展
ゲリラ豪雨の降雨強度予測におけるライフサイクル概念の有用性に関する研究
生命周期概念在游击暴雨雨强预测中的应用研究
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomoyasu Maekawa;Hwayeon Kim and Eiichi Nakakita
  • 通讯作者:
    Hwayeon Kim and Eiichi Nakakita
INVESTIGATION OF THE EFFECTIVENESS OF LIFE STAGE IN THE QUANTITATIVE RISK PREDICTION OF GUERRILLA HEAVY RAINFALL
生命阶段在游击强降雨定量风险预测中的有效性研究
Development of a Quantitative Risk Prediction Method based on Life Cycle of Guerrilla-heavy Rainfall
基于游击性强降雨生命周期的定量风险预测方法开发
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masaya Taniguchi and Satoshi Tojo;Koji Mineshima;Eiichi Nakakita
  • 通讯作者:
    Eiichi Nakakita
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

金 和妍其他文献

金 和妍的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Establishment of a novel experimental system for the comprehensive understanding and quantitative risk assessment of drug-induced intestinal toxicity
建立药物肠道毒性综合认识和定量风险评估的新型实验体系
  • 批准号:
    23H02656
  • 财政年份:
    2023
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Quantitative risk assessment of unintended allergens in school-provided lunch and food service at nursery.
对学校提供的午餐和托儿所食品服务中的意外过敏原进行定量风险评估。
  • 批准号:
    23K07902
  • 财政年份:
    2023
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A quantitative risk framework to assess the impact of climate change on coal tip stability.
评估气候变化对煤尖稳定性影响的定量风险框架。
  • 批准号:
    2884324
  • 财政年份:
    2023
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Studentship
A novel quantitative risk assessment framework for fractured rock slopes
一种新颖的裂隙岩质边坡定量风险评估框架
  • 批准号:
    DP220103381
  • 财政年份:
    2022
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Discovery Projects
Quantitative Risk Management under Model Uncertainty: Reinsurance, Capital Allocation, and Systemic Risk
模型不确定性下的定量风险管理:再保险、资本配置和系统性风险
  • 批准号:
    RGPIN-2022-03354
  • 财政年份:
    2022
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical modelling of extreme values and dependence in quantitative risk analysis
定量风险分析中极值和依赖性的统计建模
  • 批准号:
    DDG-2019-06064
  • 财政年份:
    2021
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Discovery Development Grant
Statistical modelling of extreme values and dependence in quantitative risk analysis
定量风险分析中极值和依赖性的统计建模
  • 批准号:
    DDG-2019-06064
  • 财政年份:
    2020
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Discovery Development Grant
A Quantitative Risk Model for Predicting Outcome and Identifying Structural Biomarkers of Treatment Targets in Oral Cancer on a Large Multi-Center Patient Cohort
用于预测大型多中心患者队列口腔癌治疗目标的结果和识别结构生物标志物的定量风险模型
  • 批准号:
    9974099
  • 财政年份:
    2020
  • 资助金额:
    $ 0.96万
  • 项目类别:
A Quantitative Risk Model for Predicting Outcome and Identifying Structural Biomarkers of Treatment Targets in Oral Cancer on a Large Multi-Center Patient Cohort
用于预测大型多中心患者队列口腔癌治疗目标的结果和识别结构生物标志物的定量风险模型
  • 批准号:
    10583558
  • 财政年份:
    2020
  • 资助金额:
    $ 0.96万
  • 项目类别:
A Quantitative Risk Model for Predicting Outcome and Identifying Structural Biomarkers of Treatment Targets in Oral Cancer on a Large Multi-Center Patient Cohort
用于预测大型多中心患者队列口腔癌治疗目标的结果和识别结构生物标志物的定量风险模型
  • 批准号:
    10373021
  • 财政年份:
    2020
  • 资助金额:
    $ 0.96万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了