Neural mechanisms underlying vocal learning in zebra finches

斑胸草雀声音学习的神经机制

基本信息

项目摘要

Learning a motor skill often involves transforming an internal neural template that has been shaped by observation into a series of motor commands. To reach the desired movement, it is necessary to practice many times and compare the performance to the template. Learning to serve a tennis ball, for instance, involves observing a teacher, rehearsing your serve and recognizing your mistakes while practicing. The neural mechanisms underlying the process of motor skill learning are not well understood. I address this issue in the zebra finch, a songbird that acquires its song via observational learning: zebra finches listen to their tutor to form a neural song template, integrate this template into their motor program, and compare their ongoing song performance to the template. Zebra finches have interconnected, dedicated neural pathways for auditory processing, motor production and song learning and are thus particularly well suited for studying how sensory information is translated into motor performance on a neuronal level. To explore interactions between neural circuits during motor learning it is important to measure the synaptic inputs and outputs of these circuits during behavior. Intracellular recordings enable us to monitor network activity from the perspective of a single cell and are the ideal technique to measure the underlying neural dynamics within and across networks. The intracellular microdrive represents a novel tool to measure synaptic inputs onto single cells during behavior. During my postdoc I helped to develop the intracellular microdrive and used it to investigate sensorimotor integration in the premotor nucleus of adult and juvenile zebra finches during singing and listening. In the future I plan to perform intracellular recordings in freely behaving zebra finches at various developmental stages both in higher-order auditory areas and areas responsible for motor production and learning. These experiments will reveal the synaptic profile of neurons during the formation of the template and clarify how the performance improvements that practice affords are encoded at the cellular level. The specific aims of my research proposal are 1) to investigate how higher-order auditory areas represent the song template in order to elucidate how the template is integrated into the motor circuit during song rehearsal and 2) to explore how the output signal sent by the motor pathway is critically evaluated against the target template to improve motor performance.
学习运动技能通常涉及将通过观察形成的内部神经模板转换为一系列运动命令。为了达到预期的动作,需要多次练习,并将表现与模板进行比较。例如,学习发球需要观察老师,练习发球,并在练习时认识到自己的错误。运动技能学习过程中的神经机制还没有得到很好的理解。我在斑胸草雀(zebra finch)身上解决了这个问题,斑胸草雀是一种通过观察学习获得歌声的鸣禽:斑胸草雀听导师的话形成一个神经歌声模板,将这个模板整合到它们的运动程序中,并将它们正在进行的歌声表演与模板进行比较。斑胸草雀具有相互连接的专用神经通路,用于听觉处理,运动产生和歌曲学习,因此特别适合研究感官信息如何在神经元水平上转化为运动表现。为了探索运动学习过程中神经回路之间的相互作用,测量这些回路在行为过程中的突触输入和输出是很重要的。细胞内记录使我们能够从单个细胞的角度监测网络活动,并且是测量网络内和网络间潜在神经动力学的理想技术。细胞内微驱动器代表了一种新的工具来测量突触输入到单个细胞在行为。在我的博士后期间,我帮助开发了细胞内微驱动器,并用它来研究成年和幼年斑胸草雀在唱歌和倾听时运动前核的感觉运动整合。在未来,我计划在不同发育阶段的自由行为斑胸草雀进行细胞内记录,包括高阶听觉区和负责运动产生和学习的区域。这些实验将揭示在模板形成过程中神经元的突触特征,并阐明实践提供的性能改善如何在细胞水平上编码。我的研究计划的具体目标是:1)调查高阶听觉区域如何代表歌曲模板,以阐明在歌曲排练期间模板如何整合到运动回路中; 2)探索如何根据目标模板对运动通路发送的输出信号进行批判性评估,以提高运动性能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Daniela Vallentin其他文献

Dr. Daniela Vallentin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Daniela Vallentin', 18)}}的其他基金

Synaptic mechanisms of learned vocal production in the zebra finch
斑胸草雀学习发声的突触机制
  • 批准号:
    201074667
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships

相似国自然基金

Exploring the Intrinsic Mechanisms of CEO Turnover and Market
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
Erk1/2/CREB/BDNF通路在CSF1R相关性白质脑病致病机制中的作用研究
  • 批准号:
    82371255
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Foxc2介导Syap1/Akt信号通路调控破骨/成骨细胞分化促进颞下颌关节骨关节炎的机制研究
  • 批准号:
    82370979
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
MYRF/SLC7A11调控施万细胞铁死亡在三叉神经痛脱髓鞘病变中的作用和分子机制研究
  • 批准号:
    82370981
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
Idh3a作为线粒体代谢—表观遗传检查点调控产热脂肪功能的机制研究
  • 批准号:
    82370851
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
声致离子电流促进小胶质细胞M2极化阻断再生神经瘢痕退变免疫机制
  • 批准号:
    82371973
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
  • 批准号:
    82371652
  • 批准年份:
    2023
  • 资助金额:
    45.00 万元
  • 项目类别:
    面上项目
用于小尺寸管道高分辨成像荧光聚合物点的构建、成像机制及应用研究
  • 批准号:
    82372015
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
小脑浦肯野细胞突触异常在特发性震颤中的作用机制及靶向干预研究
  • 批准号:
    82371248
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目

相似海外基金

MCA Pilot PUI: Neural Signaling and Mechanisms Underlying Sensory Integration and Plasticity
MCA Pilot PUI:感觉统合和可塑性背后的神经信号和机制
  • 批准号:
    2322317
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Elucidation of the neural mechanisms underlying palatability of water
阐明水适口性的神经机制
  • 批准号:
    22KJ2602
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Brain Mechanisms Underlying Changes in Neural Oscillations through Adolescent Cognitive Maturation
青少年认知成熟导致神经振荡变化的大脑机制
  • 批准号:
    10675169
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Neural and affective mechanisms underlying prospective self-control costs
潜在自我控制成本的神经和情感机制
  • 批准号:
    10660515
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Mechanisms underlying a decline in neural stem cell migration during aging
衰老过程中神经干细胞迁移下降的机制
  • 批准号:
    10750482
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Identifying pathogenic mechanisms underlying PACS1 Syndrome: implications for neural development - Research Supplement to Promote Diversity in Health-Related Research
识别 PACS1 综合征的致病机制:对神经发育的影响 - 促进健康相关研究多样性的研究补充
  • 批准号:
    10741578
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Identifying pathogenic mechanisms underlying PACS1 Syndrome: implications for neural development
识别 PACS1 综合征的致病机制:对神经发育的影响
  • 批准号:
    10881289
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Neural circuits and mechanisms underlying active and passive stress coping
主动和被动压力应对的神经回路和机制
  • 批准号:
    10681051
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Neural and computational mechanisms underlying robust object recognition
鲁棒物体识别背后的神经和计算机制
  • 批准号:
    10682285
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
The Neural Mechanisms Underlying Categorical Decision Making
分类决策背后的神经机制
  • 批准号:
    10750000
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了