Entanglement entropies and spectra of interacting fermions from quantum Monte Carlo simulations

量子蒙特卡罗模拟中相互作用的费米子的纠缠熵和光谱

基本信息

项目摘要

In this grant proposal we will consider strongly-correlated many body quantum systems from the point of view of entanglement. To define entanglement one can consider a ground state wave function of a d-dimensional system and carry out a real space bipartition. Integrating out half of the space produces a mixed state described by a reduced density matrix. The negative logarithm of this reduced density matrix corresponds to the entanglement Hamiltonian and its entropy to the entropy of entanglement. We will build on recent progress in the realm of auxiliary-field quantum Monte Carlo simulations for fermionic systems which allow the calculation of the spectrum of the entanglement Hamiltonian or even of the Hamiltonian itself. This quantity is potentially of great interest since its form is very often dictated by global or emergent symmetries. It is also a tool of choice to characterize topological states of matter. With our novel numerical tools we will seek to compute the entanglement Hamiltonian at finite and zero temperature for a variety of problems, including one-dimensional correlated electron models, spin systems across quantum critical points, and topological phases of matter. Being a stochastic method, and for the class of problems where the infamous sign problem is absent, the numerical complexity of our approach scales polynomially with system size and inverse temperature.
在这个资助计划中,我们将从纠缠的角度考虑强关联的多体量子系统。 为了定义纠缠,可以考虑d维系统的基态波函数,并进行真实的空间二分。积分出一半的空间产生由约化密度矩阵描述的混合状态。这个约化密度矩阵的负对数对应于纠缠哈密顿量,其熵对应于纠缠熵。 我们将在费米子系统辅助场量子蒙特卡罗模拟领域的最新进展的基础上再接再厉,该模拟允许计算纠缠汉密尔顿量甚至汉密尔顿量本身的谱。 这个量可能会引起人们的极大兴趣,因为它的形式通常由全局对称性或突现对称性决定。它也是描述物质拓扑状态的工具。 利用我们新颖的数值工具,我们将寻求计算各种问题在有限和零温度下的纠缠哈密顿量,包括一维相关电子模型,跨量子临界点的自旋系统和物质的拓扑相。作为一种随机方法,对于一类不存在臭名昭著的符号问题的问题,我们的方法的数值复杂性与系统大小和逆温度成多项式关系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Fakher Fakhry Assaad其他文献

Professor Dr. Fakher Fakhry Assaad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Fakher Fakhry Assaad', 18)}}的其他基金

Algorithms for Lattice Fermions
格子费米子算法
  • 批准号:
    390966303
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research data and software (Scientific Library Services and Information Systems)
Intertwined orders and exotic phase transitions in Dirac fermions
狄拉克费米子中相互交织的秩序和奇异的相变
  • 批准号:
    404287348
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Action-based quantum Monte Carlo approach to fermion-boson lattice models
基于动作的费米子-玻色子晶格模型的量子蒙特卡罗方法
  • 批准号:
    229069238
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Units
Quantum Monte Carlo studies of spin liquids and correlation induced effects in topological band insulators
拓扑带绝缘体中自旋液体和相关诱导效应的量子蒙特卡罗研究
  • 批准号:
    216711240
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Coordination Funds
协调基金
  • 批准号:
    234245014
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Units
Single-particle spectral functions for heavy fermion surface-systems and coupled one-dimensional nanowires
重费米子表面系统和耦合一维纳米线的单粒子光谱函数
  • 批准号:
    156020062
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Units
Numerical studies of correlated electron systems
相关电子系统的数值研究
  • 批准号:
    5403159
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Numerical studies of spin and charge dynamics in correlated electron systems
相关电子系统中自旋和电荷动力学的数值研究
  • 批准号:
    5342034
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Physik
物理
  • 批准号:
    5248960
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Fellowships
Phase transitions beyond the Landau-Ginzburg-Wilson paradigm.
超越朗道-金茨堡-威尔逊范式的相变。
  • 批准号:
    493886309
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

A principled generalization of the maximum entropy principle for non-Shannon systems
非香农系统最大熵原理的原则概括
  • 批准号:
    23K16855
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Information Theoretic Inequalities for Smooth Entropies
光滑熵的信息论不等式
  • 批准号:
    23K16839
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Direct Calculation of Activation Energies and Entropies for Chemical Dynamics
化学动力学活化能和熵的直接计算
  • 批准号:
    2102656
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A Unified Approach to Coding Problems with Conditional Smooth Renyi Entropies
条件平滑Renyi熵编码问题的统一方法
  • 批准号:
    21K21291
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Nonlocal Partial Differential Equations: entropies, gradient flows, phase transitions and applications
非局部偏微分方程:熵、梯度流、相变和应用
  • 批准号:
    EP/P031587/1
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Fundamental studies on entropies and inequalities in information science
信息科学中熵和不等式的基础研究
  • 批准号:
    16K05257
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on Inequalities related to several kinds of entropies in classical or quantum system
经典或量子系统中几种熵相关不等式的研究
  • 批准号:
    26400119
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Making software more reliable using a new model for entropies of computers' internal state
使用计算机内部状态熵的新模型使软件更加可靠
  • 批准号:
    DP120101413
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
A study of Entropies of pseudo-Anosov mapping classes and hyperbolic fibered 3-manifolds
伪阿诺索夫映射类和双曲纤维3流形的熵研究
  • 批准号:
    24740039
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Research on inequalities related to several entropies in classical or quantum system
经典或量子系统中与多个熵相关的不等式研究
  • 批准号:
    23540208
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了