Numerical studies of correlated electron systems
相关电子系统的数值研究
基本信息
- 批准号:5403159
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2003
- 资助国家:德国
- 起止时间:2002-12-31 至 2012-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of this research proposal is to develop and investigate numerical approaches to tackle the correlated electron problem. We will consider Hubbard type hamiltonians to describe the low energy physics of correlated electron systems such as transition metal oxides and organic compounds. Stochastic approaches are plagued by the sign problem which results in an exponential increase of the required numerical effort as a function of system size and inverse temperature. Our goal is to develop and investigate approximate schemes to circumvent this sign problem. The common point between the methods we will investigate are that they are all capable - at a minimal cost - to reproduce saddle point (or mean-field) results. They may in a certain sense, be seen as a systematic way of taking into account quantum fluctuations around the mean-field solution. To be more specific, we will concentrate on three algorithms. i) Starting from the Hubbard model on arbitrary lattice topologies and band-fillings we can generalize it by enhancing the number of fermion flavors from two to N. As a function of growing values of N and the nature of the generalization, we will flow to a given saddle point or mean-field solution. As a function of N the sign problem becomes less and less severe thus allowing us to carry out simulations on increasingly large lattices. Within this framework we will investigate both stripes phases and d-density wave states beyond the mean-field approximation. ii) New algorithms have recently been introduced to solve nummerically Hubbard type models in intermediate dimensions. We will concentrate on two methods: the Path Integral Renormalization Group approach (PIRG) as well as the constrained path quantum Monte Carlo algorithm (CPQMC). Both methods are free of the sign problem but come with their own set approximations. In particular, the PIRG method has been extensively used to investigate the Mott metal-insulator transition in intermediate dimensions. Our aim is to further develop and investigate reliability of those approaches.
该研究方案的目的是开发和研究解决关联电子问题的数值方法。我们将考虑Hubbard类哈密顿量来描述相关电子系统的低能物理,如过渡金属氧化物和有机化合物。随机方法受到符号问题的困扰,符号问题导致所需的数值工作量作为系统大小和逆温度的函数呈指数增长。我们的目标是开发和研究近似方案来绕过这个符号问题。我们将要研究的方法之间的共同点是,它们都能够以最小的成本重现鞍点(或平均场)结果。在某种意义上,它们可能被视为一种系统地考虑平均场解周围的量子涨落的方式。具体地说,我们将集中在三个算法上。I)从任意晶格拓扑和带填充上的Hubbard模型出发,我们可以通过将费米子的数目从2个增加到N来推广它。作为N的增长值和推广的性质的函数,我们将流向给定的鞍点或平均场解。作为N的函数,符号问题变得越来越不严重,从而允许我们在越来越大的晶格上进行模拟。在这个框架内,我们将研究超出平均场近似的条纹相位和d密度波态。Ii)最近引入了新的算法来数值求解中间维的Hubbard类型模型。我们将集中介绍两种方法:路径积分重整化群方法(PIRG)和约束路径量子蒙特卡罗算法(CPQMC)。这两种方法都没有符号问题,但都有自己的集合近似。特别是,PIRG方法已被广泛用于研究中间维度的Mott金属-绝缘体相变。我们的目标是进一步开发和调查这些方法的可靠性。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Time and spatially resolved quench of the fermionic Hubbard model showing restricted equilibration
费米子哈伯德模型的时间和空间分辨淬灭显示受限平衡
- DOI:10.1103/physrevb.85.085129
- 发表时间:2012
- 期刊:
- 影响因子:3.7
- 作者:F. Goth;F. F. Assaad
- 通讯作者:F. F. Assaad
Magnetic impurities in the Kane-Mele model
- DOI:10.1103/physrevb.88.075110
- 发表时间:2013-08-05
- 期刊:
- 影响因子:3.7
- 作者:Goth, Florian;Luitz, David J.;Assaad, Fakher F.
- 通讯作者:Assaad, Fakher F.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Fakher Fakhry Assaad其他文献
Professor Dr. Fakher Fakhry Assaad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Fakher Fakhry Assaad', 18)}}的其他基金
Algorithms for Lattice Fermions
格子费米子算法
- 批准号:
390966303 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research data and software (Scientific Library Services and Information Systems)
Intertwined orders and exotic phase transitions in Dirac fermions
狄拉克费米子中相互交织的秩序和奇异的相变
- 批准号:
404287348 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Entanglement entropies and spectra of interacting fermions from quantum Monte Carlo simulations
量子蒙特卡罗模拟中相互作用的费米子的纠缠熵和光谱
- 批准号:
299339031 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Units
Action-based quantum Monte Carlo approach to fermion-boson lattice models
基于动作的费米子-玻色子晶格模型的量子蒙特卡罗方法
- 批准号:
229069238 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Units
Quantum Monte Carlo studies of spin liquids and correlation induced effects in topological band insulators
拓扑带绝缘体中自旋液体和相关诱导效应的量子蒙特卡罗研究
- 批准号:
216711240 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Single-particle spectral functions for heavy fermion surface-systems and coupled one-dimensional nanowires
重费米子表面系统和耦合一维纳米线的单粒子光谱函数
- 批准号:
156020062 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Units
Numerical studies of spin and charge dynamics in correlated electron systems
相关电子系统中自旋和电荷动力学的数值研究
- 批准号:
5342034 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Research Grants
Phase transitions beyond the Landau-Ginzburg-Wilson paradigm.
超越朗道-金茨堡-威尔逊范式的相变。
- 批准号:
493886309 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
脂滴聚集型小胶质细胞介导的髓鞘病变促进小鼠抑郁样行为及其机制研究
- 批准号:82371528
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
星形胶质细胞介导的髓鞘吞噬参与慢性脑低灌注白质损伤的机制研究
- 批准号:82371307
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Nuclear Magnetic Resonance Studies of Quantum Criticality in Correlated Electron Materials
相关电子材料量子临界性的核磁共振研究
- 批准号:
2210613 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Non-perturbative studies of strongly correlated quantum many-body systems
强相关量子多体系统的非微扰研究
- 批准号:
RGPIN-2018-05502 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Variational studies of strongly-correlated systems
强相关系统的变分研究
- 批准号:
RGPIN-2020-04634 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Ultra-low temperature scanning-tunneling microscopy studies on bottom-up strongly correlated electron systems
自下而上强相关电子系统的超低温扫描隧道显微镜研究
- 批准号:
22K18696 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Theoretical studies of quantum magnets and strongly correlated metals
量子磁体和强相关金属的理论研究
- 批准号:
RGPIN-2020-05615 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Studies on extreme value theory for strongly correlated random fields
强相关随机场极值理论研究
- 批准号:
22K13927 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Variational studies of strongly-correlated systems
强相关系统的变分研究
- 批准号:
RGPIN-2020-04634 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Theoretical studies of quantum magnets and strongly correlated metals
量子磁体和强相关金属的理论研究
- 批准号:
RGPIN-2020-05615 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Longitudinal Antibody Profiles Correlated with Protection from Malaria in Malawi
与马拉维疟疾预防相关的纵向抗体谱
- 批准号:
10327328 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Non-perturbative studies of strongly correlated quantum many-body systems
强相关量子多体系统的非微扰研究
- 批准号:
RGPIN-2018-05502 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual