New Methods for Reliability-Based Design Optimization of Multiphase Steel Components under Polymorphic Uncertainties

多相不确定性下多相钢构件基于可靠性的设计优化新方法

基本信息

项目摘要

Modeling the influence of multiple uncertainties is a fundamental problem for the optimization of tailored, crash-relevant car parts, and also for their numerical structural analysis itself. These uncertainties are associated with the material properties, which are dominated by uncertainties on a lower scale, with the production process, and with the loading scenarios to be expected during the lifetime of the component. Especially as a result of the tailoring strategies such as the concept of tailored blanks or local laser hardening, important material properties for the crash safety vary over time due to cyclic loading under normal operation conditions, which leads to rather large additional uncertainties for the analysis of the crash scenario. Therefore, in this project the main goal is to develop methods for the reliability-based design optimization of tailored, crash-relevant car components under polymorphic uncertainties. The major target therein is to maximize performance measures while prescribing maximally acceptable values of upper bounds on the probability of failure (PoF). The methods will be based on a Dirac mass discretization of the epistemic uncertainties and thereby, no assumptions regarding the type of distribution functions for these uncertainties need to be made. The aleatoric uncertainties are included through a nested approach taking advantage of improved Monte-Carlo methods and specialized surrogate models. The Dirac mass discretization will be extended with respect to the following aspects: (i) Combination with fuzzy variables to describe epistemic design parameters, (ii) incorporation into the concept of alpha-level discretizations, and (iii) enhancement to account for optimal bounds on propagated uncertainties related with the performance measures to be optimized. For the computation of the performance measures and the quantity of interest defining failure, a realistic computational model will be constructed which includes the relevant parts of the production process, for instance to account for the eigenstresses induced by the metal forming procedure. In addition to that, a new method will be developed to incorporate the local variation of material properties by surrogate models using neural networks based on random field realizations. These will be obtained by the data-based identification of real property maps and the construction of realizations which match the real property distributions and correlations. By including a double-nested Monte-Carlo analysis, the uncertainties of the model itself used for the training of the neural network will be controlled. The developed methods will be analyzed in the context of realistic optimization problems of car parts under crash loads as well as benchmark problems defined in SPP 1886.
对多个不确定性的影响进行建模是优化定制的、与碰撞相关的汽车部件的基本问题,也是其数值结构分析本身的基本问题。这些不确定性与材料特性、生产工艺以及部件寿命期内预期的载荷情况有关,材料特性主要受较低尺度的不确定性影响。特别是由于定制策略(例如定制坯料或局部激光硬化的概念),用于碰撞安全性的重要材料特性由于在正常操作条件下的循环载荷而随时间变化,这导致碰撞情景分析的相当大的附加不确定性。因此,在这个项目中的主要目标是开发基于可靠性的设计优化的定制,碰撞相关的汽车部件多态不确定性的方法。其中的主要目标是最大限度地提高性能指标,同时规定最大可接受的值的上限上的故障概率(PoF)。该方法将基于狄拉克质量离散化的认知不确定性,因此,没有假设这些不确定性的分布函数的类型需要作出。任意的不确定性,包括通过一个嵌套的方法,利用改进的蒙特-卡罗方法和专门的代理模型。狄拉克质量离散化将扩展到以下几个方面:(i)与模糊变量相结合,以描述认知设计参数,(ii)纳入α级离散化的概念,以及(iii)增强考虑传播的不确定性与性能措施进行优化的最佳界限。为了计算性能指标和确定故障的相关数量,将构建一个实际的计算模型,该模型包括生产过程的相关部分,例如,用于解释金属成形过程引起的特征应力。除此之外,还将开发一种新的方法,通过使用基于随机场实现的神经网络的代理模型来结合材料特性的局部变化。这些将通过基于数据的真实的属性映射的识别和匹配真实的属性分布和相关性的实现的构造来获得。通过包括双重嵌套的蒙特-卡罗分析,将控制用于神经网络训练的模型本身的不确定性。所开发的方法将在碰撞载荷下的汽车零件的现实优化问题以及SPP 1886中定义的基准问题的背景下进行分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Daniel Balzani其他文献

Professor Dr.-Ing. Daniel Balzani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Daniel Balzani', 18)}}的其他基金

Robust and Efficient Finite Element Discretizations for Higher-Order Gradient Formulations
高阶梯度公式的稳健且高效的有限元离散化
  • 批准号:
    392564687
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Dual-Phase Steels - From Micro to Macro Properties (EXASTEEL-2)
双相钢 - 从微观性能到宏观性能 (EXASTEEL-2)
  • 批准号:
    230723766
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Domain-Decomposition-Based Fluid Structure Interaction Algorithms for Highly Nonlinear and Anisotropic Elastic Arterial Wall Models in 3 D
基于域分解的 3D 高度非线性和各向异性弹性动脉壁模型的流固耦合算法
  • 批准号:
    214421492
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Multiscale Modeling of Damage in Micro-Heterogeneous Materials based on incremental variational formulations
基于增量变分公式的微观异质材料损伤的多尺度建模
  • 批准号:
    181577514
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
Biomechanics of Arterial Walls under Supra-Physiological Loading Conditions
超生理负荷条件下动脉壁的生物力学
  • 批准号:
    166835325
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
CISM-Kurs "Multiscale Modelling of Damage and Fracture Processes in Composite Materials"
CISM 课程“复合材料损伤和断裂过程的多尺度建模”
  • 批准号:
    5435545
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Characterization and modelling of the nonlinear material behaviour of coated fabrics for architectural membrane structures II
建筑膜结构涂层织物非线性材料行为的表征和建模 II
  • 批准号:
    278626677
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Modeling and simulation of pharmaco-mechanical fluid-structure interaction for an enhanced treatment of cardiovascular diseases
药物-机械-流体-结构相互作用的建模和模拟,以增强心血管疾病的治疗
  • 批准号:
    465228106
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Viscoelastic microbead stress sensors and validation based on organoid mechanobiology
基于类器官力学生物学的粘弹性微珠应力传感器及验证
  • 批准号:
    467937258
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Novel Approaches for the Multidimensional Convexification of Inelastic Variational Models for Fracture
断裂非弹性变分模型多维凸化的新方法
  • 批准号:
    441154176
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Further improvement of performance and reliability of the DE-Sinc methods
进一步提高 DE-Sinc 方法的性能和可靠性
  • 批准号:
    23K03218
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On the reliability of computational algorithms in optimal control methods using highly expressive non-differentiable functions
使用高表达不可微函数的最优控制方法中计算算法的可靠性
  • 批准号:
    23K13359
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Empirical likelihood and other nonparametric and semiparametric statistical methods for complex surveys, reliability engineering, and environmental studies
用于复杂调查、可靠性工程和环境研究的经验可能性和其他非参数和半参数统计方法
  • 批准号:
    RGPIN-2017-06267
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Exploring high-reliability and cost-effective methods for generating feedback comment generataton for writing learning
探索高可靠性和高性价比的写作学习反馈评论生成方法
  • 批准号:
    22K12326
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Using Modern Data Science Methods and Advanced Analytics to Improve the Efficiency, Reliability, and Timeliness of Cardiac Surgical Quality Data
使用现代数据科学方法和高级分析来提高心脏手术质量数据的效率、可靠性和及时性
  • 批准号:
    10364433
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Data-Driven Reliability-Based Design Methods for Piles in Glacial Deposits
冰川沉积物中桩的数据驱动的基于可靠性的设计方法
  • 批准号:
    RGPIN-2020-05451
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Machine learning methods for drillstring dynamics and equipment reliability
钻柱动力学和设备可靠性的机器学习方法
  • 批准号:
    2747970
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Using Modern Data Science Methods and Advanced Analytics to Improve the Efficiency, Reliability, and Timeliness of Cardiac Surgical Quality Data
使用现代数据科学方法和高级分析来提高心脏手术质量数据的效率、可靠性和及时性
  • 批准号:
    10542758
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Methods to improve the reliability of wearable sensor gait data.
提高可穿戴传感器步态数据可靠性的方法。
  • 批准号:
    RGPIN-2019-04374
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Data-Driven Methods in Maintenance and Reliability Engineering
维护和可靠性工程中的数据驱动方法
  • 批准号:
    RGPIN-2015-04019
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了