Domain-Decomposition-Based Fluid Structure Interaction Algorithms for Highly Nonlinear and Anisotropic Elastic Arterial Wall Models in 3 D
基于域分解的 3D 高度非线性和各向异性弹性动脉壁模型的流固耦合算法
基本信息
- 批准号:214421492
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2012
- 资助国家:德国
- 起止时间:2011-12-31 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The reliable prediction of stress distributions in arterial walls is the basis for a quantitative estimation of rupture probabilities in diseased arteries as part of a simulation-based framework for enhanced medical therapeutics. In this extension project, we plan to further enhance our algorithms, models, and software from the current state towards more realistic settings. These include an advanced modeling of the in-vivo behavior of the vessel wall, its geometry, the multi-layered structure of the wall, as well as the boundary conditions. Additionally, we will improve the robustness of our algorithms with respect to these more realistic settings and also analyze time-critical aspects of our algorithms and their implementations in order to reduce the time to solution. The solver environment developed in the first period could not be further accelerated by parallelization in space alone due to small time steps necessary for the convergence. Thus, we have to improve the time-critical aspects of our algorithmic approach. This will include adaptive time stepping, robust fully implicit methods, and parallel-in-time integrators, which can be still combined well with our parallelization in space. Another algorithmic aspect is to further improve the robustness of the preconditioners as well as to even further increase the parallel scalability in space. Although we do not expect to decrease the time to solution by parallelization in space alone, the improved time discretization, allowing for larger time steps, will also enable us to profit from further improved scalability in space. The fully coupled highly-nonlinear fluid-structure interaction problem will be solved using a monolithic solution scheme wherein the nonlinearities are treated in a fully-implicit manner. With respect to the mechanical modeling of the wall tissue, in the first period, developments were achieved for the description of the passive response including a visco-elastic model, an algorithm for computing a biologically motivated fiber orientation, and a method to incorporate residual stresses. In the second period, we plan to include models to describe the active response resulting from smooth muscle activation, which contributes significantly to the stresses under in-vivo conditions. Furthermore, an anisotropic shell element formulation will be developed to include the intima into the simulation. More realistic boundary conditions for the simulations need to be taken into account as well. In FSI simulations of arterial walls, often the boundary conditions of the structural part are not well determined. In the second period, we will investigate an artery embedded in surrounding tissue to devise more realistic boundary conditions. We also plan to include a geometric multiscale model, accounting for the global circulation. Sensitivity analyses will be performed using the new methods to estimate the influence of different plaque compositions on hazardous stress concentrations.
动脉壁应力分布的可靠预测是定量估计病变动脉破裂概率的基础,这是基于模拟的增强医学治疗框架的一部分。在这个扩展项目中,我们计划进一步增强我们的算法、模型和软件,从当前的状态转向更现实的设置。其中包括对血管壁的体内行为、其几何形状、管壁的多层结构以及边界条件的高级建模。此外,我们将提高我们的算法相对于这些更现实的设置的健壮性,并分析我们的算法及其实现的时间关键方面,以减少解决问题的时间。由于收敛所需的时间步长较小,仅靠空间并行化不能进一步加速第一阶段开发的求解器环境。因此,我们必须改进算法方法中对时间至关重要的方面。这将包括自适应时间推进、稳健的全隐式方法和时间并行积分器,它们仍然可以很好地与我们的空间并行化相结合。算法的另一个方面是进一步提高预条件的健壮性,以及进一步增加空间上的并行可伸缩性。虽然我们不希望仅通过空间并行化来减少求解时间,但改进的时间离散化允许更大的时间步长,也将使我们能够从进一步改善的空间可伸缩性中受益。完全耦合的高度非线性流固耦合问题将使用整体解格式来求解,其中以完全隐式的方式处理非线性。关于壁组织的力学模型,在第一阶段,在描述被动响应方面取得了进展,包括粘弹性模型、计算生物激励的纤维取向的算法以及考虑残余应力的方法。在第二阶段,我们计划包括模型来描述由平滑肌激活引起的主动反应,这对活体条件下的压力有很大的贡献。此外,还将开发一种各向异性壳单元,以将内膜包含在模拟中。还需要考虑模拟的更真实的边界条件。在动脉壁的FSI模拟中,结构部分的边界条件往往不能很好地确定。在第二阶段,我们将研究嵌入周围组织的动脉,以设计更现实的边界条件。我们还计划包括一个几何多尺度模型,以考虑全球环流。将使用新方法进行敏感性分析,以估计不同斑块成分对危险应力集中的影响。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reduced dimension GDSW coarse spaces for monolithic Schwarz domain decomposition methods for incompressible fluid flow problems
- DOI:10.1002/nme.6258
- 发表时间:2019-11
- 期刊:
- 影响因子:2.9
- 作者:Alexander Heinlein;C. Hochmuth;A. Klawonn
- 通讯作者:Alexander Heinlein;C. Hochmuth;A. Klawonn
An algorithmic scheme for the automated calculation of fiber orientations in arterial walls
- DOI:10.1007/s00466-016-1321-z
- 发表时间:2016-11-01
- 期刊:
- 影响因子:4.1
- 作者:Fausten, Simon;Balzani, Daniel;Schroder, Joerg
- 通讯作者:Schroder, Joerg
A combined growth and remodeling framework for the approximation of residual stresses in arterial walls
用于近似动脉壁残余应力的组合生长和重塑框架
- DOI:10.1002/zamm.201700273
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:A. Zahn;D. Balzani
- 通讯作者:D. Balzani
Monolithic Overlapping Schwarz Domain Decomposition Methods with GDSW Coarse Spaces for Incompressible Fluid Flow Problems
不可压缩流体流动问题的 GDSW 粗空间整体重叠黑域分解方法
- DOI:10.1137/18m1184047
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:A. Heinlein;C. Hochmuth;A. Klawonn
- 通讯作者:A. Klawonn
A Parallel Implementation of a Two-Level Overlapping Schwarz Method with Energy-Minimizing Coarse Space Based on Trilinos
基于Trilinos的能量最小化粗空间两级重叠Schwarz方法的并行实现
- DOI:10.1137/16m1062843
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:A. Heinlein;A. Klawonn;O. Rheinbach
- 通讯作者:O. Rheinbach
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Daniel Balzani其他文献
Professor Dr.-Ing. Daniel Balzani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Daniel Balzani', 18)}}的其他基金
Robust and Efficient Finite Element Discretizations for Higher-Order Gradient Formulations
高阶梯度公式的稳健且高效的有限元离散化
- 批准号:
392564687 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Priority Programmes
Dual-Phase Steels - From Micro to Macro Properties (EXASTEEL-2)
双相钢 - 从微观性能到宏观性能 (EXASTEEL-2)
- 批准号:
230723766 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Priority Programmes
Multiscale Modeling of Damage in Micro-Heterogeneous Materials based on incremental variational formulations
基于增量变分公式的微观异质材料损伤的多尺度建模
- 批准号:
181577514 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Fellowships
Biomechanics of Arterial Walls under Supra-Physiological Loading Conditions
超生理负荷条件下动脉壁的生物力学
- 批准号:
166835325 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
CISM-Kurs "Multiscale Modelling of Damage and Fracture Processes in Composite Materials"
CISM 课程“复合材料损伤和断裂过程的多尺度建模”
- 批准号:
5435545 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Research Grants
New Methods for Reliability-Based Design Optimization of Multiphase Steel Components under Polymorphic Uncertainties
多相不确定性下多相钢构件基于可靠性的设计优化新方法
- 批准号:
311909883 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
Characterization and modelling of the nonlinear material behaviour of coated fabrics for architectural membrane structures II
建筑膜结构涂层织物非线性材料行为的表征和建模 II
- 批准号:
278626677 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Modeling and simulation of pharmaco-mechanical fluid-structure interaction for an enhanced treatment of cardiovascular diseases
药物-机械-流体-结构相互作用的建模和模拟,以增强心血管疾病的治疗
- 批准号:
465228106 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
Viscoelastic microbead stress sensors and validation based on organoid mechanobiology
基于类器官力学生物学的粘弹性微珠应力传感器及验证
- 批准号:
467937258 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Novel Approaches for the Multidimensional Convexification of Inelastic Variational Models for Fracture
断裂非弹性变分模型多维凸化的新方法
- 批准号:
441154176 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
相似海外基金
Domain decomposition methods based on proper generalized decomposition for parametric heterogeneous problems
基于适当广义分解的参数异构问题域分解方法
- 批准号:
EP/V027603/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
Linear Equations Solver for Domain Decomposition Based Parallel Finite Element Methods with Inconsistent Mesh
具有不一致网格的基于域分解的并行有限元方法的线性方程求解器
- 批准号:
20K19813 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Novel Microlocal-Analysis and Domain-Decomposition Based Fast Algorithms for Elastic Wave Modeling and Inversion in Variable Media
合作研究:基于新型微局域分析和域分解的快速算法,用于可变介质中的弹性波建模和反演
- 批准号:
2011843 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Advanced Prediction Method of Indoor Natural Ventilation Flow using LES-based Domain Decomposition Technique
基于LES的域分解技术的室内自然通风流量高级预测方法
- 批准号:
20H02311 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Multilevel Methods for Optimal Control of Partial Differential Equations and Optimization-Based Domain Decomposition
协作研究:偏微分方程最优控制的多级方法和基于优化的域分解
- 批准号:
1913201 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Multilevel Methods for Optimal Control of Partial Differential Equations and Optimization-Based Domain Decomposition
协作研究:偏微分方程最优控制的多级方法和基于优化的域分解
- 批准号:
1913004 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
CRII: CHS: A Plug-and-Play Deformable Model Based on Extended Domain Decomposition
CRII:CHS:基于扩展域分解的即插即用变形模型
- 批准号:
1464306 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Large scale tsunami analysis using fluid structure interaction analysis framework based on high precision MPS method by hierarchical domain decomposition
使用基于分层域分解的高精度 MPS 方法的流固耦合分析框架进行大规模海啸分析
- 批准号:
26390127 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
A dynamic domain decomposition method for solving coupled multiphysics problems based on a distributed software agent environment
基于分布式软件代理环境求解耦合多物理场问题的动态域分解方法
- 批准号:
243604517 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Development of large-scale parallel analysis method for contact problem based on domain decomposition method
基于域分解法的接触问题大规模并行分析方法开发
- 批准号:
20560061 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)