Optogenetic silencing tools for precise, all-optical analysis of synaptic circuits
用于突触回路精确、全光学分析的光遗传学沉默工具
基本信息
- 批准号:315380903
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Optogenetic manipulation of neural activity has become an indispensable strategy to interrogate synaptic plasticity, neuronal circuit function and the role of defined brain regions in animal behavior. In parallel to optogenetic activators, neuronal silencing tools are coming of age and significant progress has been made in recent years. For example, the development and identification of potent engineered and natural anion conducting Channelrhodopsins (ACRs) have opened new avenues for efficient optogenetic silencing in vivo. However, significant limitations remain for silencing neurons over extended periods and for inhibiting synaptic transmission. Unlike optogenetic activation, reliable suppression of neuronal activity generally requires continuous illumination throughout the entire silencing period, which limits simultaneous imaging of neuronal activity with optical indicators, disturbs animal behavior by visual interference and at high intensities can be cytotoxic. Moreover, recent work has shown that ACRs are not suitable for optogenetic silencing of synaptic terminals. To address the first limitation, we will build on our ACRs engineered during the first funding period and develop enhanced bistable ACRs that are 1) activated with a short light pulse, 2) remain active in absence of light for minutes and 3) can be inactivated with high temporal precision at a defined time point. We will further target them to different subcellular compartments in order to allow circuit-specific as well as sub-cellular manipulation of neuronal activity. Regarding the second limitation, there is an urgent need to develop tools that can specifically suppress synaptic transmission in a desired target area without inhibiting neuronal activity per se. As ACRs are not suitable for this approach, we will take advantage of the high potency of Gi/o-protein coupled receptors (GPCRs) to inhibit synaptic release. We will explore suitable natural light-sensitive rhodopsins and generate chimeric optically activated GPCRs (opto-GPCRs) to identify variants coupling specifically to Gi/o. This approach will allow identifying an opto-GPCR suitable for sustained and repeated activation over time and holds promise as a potent optogenetic tool for synaptic silencing. We will characterize our newly generated tools in mammalian and invertebrate model systems in vivo to verify their universal applicability. Lastly, we will address novel questions in these systems by applying our tools to test specific circuit functions in the Drosophila nociceptive network, hippocampal slice cultures and the mouse thalamocortical system.
对神经活动的光遗传操作已经成为询问突触可塑性、神经元回路功能和特定脑区在动物行为中的作用的不可或缺的策略。与光遗传激活剂平行,神经元沉默工具正在成熟,近年来取得了重大进展。例如,有效的工程和天然阴离子传导通道视紫红质(ACRs)的开发和鉴定为体内高效的光遗传沉默开辟了新的途径。然而,在延长神经元沉默时间和抑制突触传递方面仍然存在重大限制。与光基因激活不同,可靠的神经元活动抑制通常需要在整个静默期内持续照明,这限制了用光学指示器同时成像神经元活动,通过视觉干扰干扰动物的行为,而且高强度可能是细胞毒性的。此外,最近的研究表明,ACRs不适合于突触终末的光遗传沉默。为了解决第一个限制,我们将在我们在第一个资助期设计的ACR的基础上开发增强型双稳态ACR,这些ACR 1)用短光脉冲激活,2)在几分钟无光的情况下保持活跃,3)可以在定义的时间点以高时间精度灭活。我们将进一步将它们定位于不同的亚细胞隔间,以便允许对神经元活动进行电路特异性和亚细胞操作。关于第二个限制,迫切需要开发工具,在不抑制神经元活动本身的情况下,专门抑制所需靶区的突触传递。由于ACRs不适合这种方法,我们将利用Gi/o蛋白偶联受体(GPCRs)的高效性来抑制突触释放。我们将探索合适的自然光敏感视紫红质,并产生嵌合的光激活GPCRs(OPTO-GPCRs)来识别与Gi/o特异耦合的变体。这种方法将允许识别适合随着时间的推移持续和重复激活的OPTO-GPCRs,并有望成为一种有效的光遗传学工具来抑制突触沉默。我们将在活体哺乳动物和无脊椎动物模型系统中表征我们新生成的工具,以验证它们的普遍适用性。最后,我们将通过应用我们的工具来测试果蝇伤害感受网络、海马片培养和小鼠丘脑皮质系统中的特定电路功能,从而解决这些系统中的新问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Peter Soba其他文献
Professor Dr. Peter Soba的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Peter Soba', 18)}}的其他基金
Dissecting Ret receptor signaling in space-filling dendrite patterning in Drosophila
解析果蝇空间填充树突图案中的 Ret 受体信号传导
- 批准号:
397556468 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Mechanisms of sensory circuit function, integration and neuromodulation in Drosophila melanogaster
果蝇感觉回路功能、整合和神经调节机制
- 批准号:
436846896 - 财政年份:
- 资助金额:
-- - 项目类别:
Heisenberg Grants
Decoding modality-specific circuit function and neuromodulation in the Drosophila nociceptive network
解码果蝇伤害性网络中的模态特异性电路功能和神经调节
- 批准号:
436847066 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
HC-Pro结构对其在传毒、协生和抑制RNA沉默中功能的影响
- 批准号:30471138
- 批准年份:2004
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
MFB: Partnerships to Transform Emerging Industries - RNA Tools/Biotechnology: Stabilizing Hairpin Inserts in RNA Virus Induced Gene Silencing Vectors
MFB:合作变革新兴产业 - RNA 工具/生物技术:稳定 RNA 病毒诱导基因沉默载体中的发夹插入
- 批准号:
2330663 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Scalable platforms for understudied histone modifications and modifiers
用于未充分研究的组蛋白修饰和修饰剂的可扩展平台
- 批准号:
10567849 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Rationally designed ribozymes switched-on by nucleotide repeat extensions as potential tools of genetic therapy for repeat expansion disorders.
合理设计的核酶通过核苷酸重复延伸开启,作为重复扩张疾病基因治疗的潜在工具。
- 批准号:
479481 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
Engineering Tools for Rapid Loss of Protein Function with Spatio-Temporal Control in Zebrafish
通过时空控制斑马鱼蛋白质功能快速丧失的工程工具
- 批准号:
10571350 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Femto-seq: Targeted photo-biotinylation, pulldown and sequencing of locus and region-specific DNA from femtoliter volumes within individual cells
Femto-seq:从单个细胞内的飞升体积中对位点和区域特异性 DNA 进行靶向光生物素化、下拉和测序
- 批准号:
10587721 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Engineering RNA editing tools for the generation of functional tRNA-derived small RNAs in the kidney
用于在肾脏中生成功能性 tRNA 衍生小 RNA 的工程 RNA 编辑工具
- 批准号:
10751516 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Role of transposon dysregulation in Alzheimer and aging brains revealed by single-cell genomic and transcriptomic analysis
单细胞基因组和转录组分析揭示转座子失调在阿尔茨海默病和大脑衰老中的作用
- 批准号:
10518531 - 财政年份:2022
- 资助金额:
-- - 项目类别:
In Silico Drug Design Targeting RNA Repeat Expansions
针对 RNA 重复扩增的计算机药物设计
- 批准号:
10439166 - 财政年份:2022
- 资助金额:
-- - 项目类别:
In Silico Drug Design Targeting RNA Repeat Expansions
针对 RNA 重复扩增的计算机药物设计
- 批准号:
10796593 - 财政年份:2022
- 资助金额:
-- - 项目类别: