Geometric structures and surface group representations into Lie groups

几何结构和表面群表示为李群

基本信息

项目摘要

The proposed projects aim to develop geometry of representations of fundamental groups of surfaces S (surface groups) into Lie groups. Finitely generate discrete groups of PSL(2, R) and PSL(2, C), called Kleinian groups, have fruitfully studied, especially, last a couple of decades. They are the groups of orientation preserving isometries of the hyperbolic spaces of dimension two and three, respectively, and represent negatively curved geometry. They play central roles in the Teichmüller theory, the study of Riemann surfaces, and 3-dimensional hyperbolic manifolds, in particular, in relation with geometrization of 3-dimensional topological manifolds. The theme of my proposed projects is to generalize interesting properties of Kleinian groups and Teichmüller theory, to more general representations and to relate geometry, topology, algebra, analysis and dynamics. One research direction of this proposal is to understand geometry of representations of the surface group into PSL(2, R) or PSL(2, C) whose images are non-discrete subgroups (non-discrete representations). Those projects seek for the geometric meaning of non-discrete representations. In particular, they are closely related to the dynamics of the action of map- ping class groups on the character varieties, the space of surface group representations. Another research direction is to study representations of surface groups to higher rank Lie groups, in particular, PSL(3, R) and PSL(3, C). While rank-one Lie groups correspond to "negatively curved geometry", higher rank Lie groups correspond to "non-positively curved geometry" and give rich geometry. It is an increasingly active area of research, and my projects concern basic problems of higher-rank representations.
拟议的项目旨在发展几何表示的基本群的表面S(表面组)到李群。PSL(2,R)和PSL(2,C)的连续生成离散群称为Kleinian群,特别是Kleinian群的研究已有几十年的历史。它们分别是二维和三维双曲空间的保向等距群,代表负弯曲几何。它们在泰希米勒理论、黎曼曲面的研究和三维双曲流形,特别是三维拓扑流形的几何化中扮演着重要角色。我提出的项目的主题是推广有趣的性质Kleinian群和Teichmüller理论,更一般的表示和相关的几何,拓扑,代数,分析和动力学。该建议的一个研究方向是理解曲面群的几何表示为PSL(2,R)或PSL(2,C),其图像是非离散子群(非离散表示)。这些项目寻求非离散表示的几何意义。特别地,它们与映射类群对特征变量的作用的动力学、表面群表示的空间密切相关。另一个研究方向是研究曲面群到高阶李群的表示,特别是PSL(3,R)和PSL(3,C)。当一阶李群对应于“负弯曲几何”时,高阶李群对应于“非正弯曲几何”并给出丰富的几何。这是一个日益活跃的研究领域,我的项目涉及高阶表示的基本问题。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
2$${\pi}$$π-Grafting and complex projective structures with generic holonomy
2$${pi}$$Ï-将复杂射影结构与通用完整性嫁接
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shinpei Baba, Ph.D.其他文献

Shinpei Baba, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

飞行器板壳结构红外热波无损检测基础理论和关键技术的研究
  • 批准号:
    60672101
  • 批准年份:
    2006
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目
新型嘧啶并三环化合物的合成研究
  • 批准号:
    20572032
  • 批准年份:
    2005
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目
磁层重联区相干结构动力学过程的观测研究
  • 批准号:
    40574067
  • 批准年份:
    2005
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目

相似海外基金

High-Entropy Alloy Nanocrystals with Controlled Compositions and Surface Structures
成分和表面结构可控的高熵合金纳米晶
  • 批准号:
    2333595
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Exploration of Crystal Surface Structures through Enumeration of Discrete Structures on an Infinite Plane and Similarity Design
通过无限平面上离散结构的枚举和相似性设计探索晶体表面结构
  • 批准号:
    23H03461
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New strategy for the design of photocatalysts based on the visualization of surface structures
基于表面结构可视化的光催化剂设计新策略
  • 批准号:
    23K17355
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Innovative Geodetic Surveys for Determining Surface and Internal Structures of Solar System Small Bodies
用于确定太阳系小天体表面和内部结构的创新大地测量
  • 批准号:
    23K17710
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Next-generation optical nanoprobes: From quantum biosensing to cellular monitoring
下一代光学纳米探针:从量子生物传感到细胞监测
  • 批准号:
    10622691
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Computer modelling of irregular nonlinear surface waves and their effects on offshore wind turbine structures
不规则非线性表面波的计算机建模及其对海上风力发电机结构的影响
  • 批准号:
    2889685
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
The Hillock: A Newly Discovered Airway Epithelial Structure and its Relationship with Squamous Metaplasia
小丘:新发现的气道上皮结构及其与鳞状上皮化生的关系
  • 批准号:
    10665873
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Immunoepigenetic targeting of MHC regulators in FAP
FAP 中 MHC 调节因子的免疫表观遗传学靶向
  • 批准号:
    10677375
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Towards an integrated analytics solution to creating a spatially-resolved single-cell multi-omics brain atlas
寻求集成分析解决方案来创建空间解析的单细胞多组学大脑图谱
  • 批准号:
    10724843
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Ex vivo maintenance of endothelial cell barrier integrity via gap junction modification to prevent early ischemic injury in solid organ transplantation
通过间隙连接修饰离体维持内皮细胞屏障完整性以预防实体器官移植中的早期缺血性损伤
  • 批准号:
    10741452
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了