High-Entropy Alloy Nanocrystals with Controlled Compositions and Surface Structures

成分和表面结构可控的高熵合金纳米晶

基本信息

  • 批准号:
    2333595
  • 负责人:
  • 金额:
    $ 63.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-03-01 至 2027-02-28
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL SUMMARYThis grant supports research efforts to create a knowledge base for the rational and deterministic synthesis of high-entropy alloy (HEA, a complex solid comprised of five or more metals) nanocrystals with controlled surfaces in terms of both atomic composition and arrangement. Because of the diversity in composition, the surface of a HEA nanocrystal naturally presents an enormous number of atoms in distinct coordination environments to produce a near-continuum distribution of adsorption energies for the key intermediate of a reaction. As such, HEA nanocrystals offer a versatile platform for the rapid development of new catalytic materials. Despite some progress in recent years, it remains a grand challenge to control the composition and surface structure of HEA nanocrystals, making it impossible to quantitatively and accurately describe the structure-property relationship of HEA-based catalysts. During this project, a transformative technique is developed to achieve deterministic and even predictable synthesis of HEA nanocrystals with controlled compositions and surface structures. The as-obtained nanocrystals can directly serve as advanced catalytic materials to benefit U.S. economy and society. The multi-disciplinary and collaborative nature of this project offers a vehicle to enhance and enrich the education and training experiences of students while broadening the participation of underrepresented groups in cutting-edge research. In particular, the students learn firsthand how to discover and develop advanced catalytic materials twice as fast at a fraction of the cost. The results from this project are also adapted to enhance classroom teaching, including the development of demonstrations and experiments to better illustrate the key concepts of science and engineering. TECHNICAL SUMMARYThis research represents the first attempt to develop single-phase HEA nanocrystals with well-defined and controllable compositions and surface structures. Traditionally, colloidal synthesis of metal nanocrystals involves one-shot injection of the metal precursor. When directly applied to a bi- or multi-metallic system, such a protocol is subject to failures because different precursors have distinct reduction kinetics and their instantaneous concentrations in the reaction solution would decay differently with reaction time. Parting from the traditional method, the investigators co-titrate the solutions of different precursors dropwise into a reaction solution so that the instantaneous concentration of each precursor is kept in a predefined steady state throughout the synthesis. As a result, metal atoms are produced from the different precursors at stable, pre-specified rates for the generation of HEA nanocrystals with a uniform composition, with the atomic ratios determined by the reduction rates of their precursors in the steady states. When conformally deposited on preformed seeds with different shapes as overlayers of a few atomic layers in thickness, HEA nanocrystals with well-defined facets are obtained. The seeds can be selectively etched away to release the HEA overlayers as ultrathin nanoplates. At a thickness of three atomic layers, the nanoplates are perfect for resolving the composition and surface structure by electron microscopy and spectroscopy. In parallel, the HEA nanocrystals are tested for catalytic reactions, with a focus on the identification of a catalyst optimal in activity and durability toward oxygen reduction and bond-selective hydrogenation. The synthetic method can also be extended to accelerate the rational development of other types of nanomaterials with complex compositions for a range of applications, including those related to chemical production, petroleum industry, national security, and public health.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要该补助金支持研究工作,以创建一个知识库的理性和确定性的合成高熵合金(HEA,一个复杂的固体组成的五个或更多的金属)纳米晶体与控制表面的原子组成和安排。由于组成的多样性,HEA的表面在不同的配位环境中自然地呈现出大量的原子,以产生反应的关键中间体的吸附能的近连续分布。因此,HEA纳米晶体为新催化材料的快速开发提供了一个通用平台。尽管近年来取得了一些进展,但控制HEA纳米晶的组成和表面结构仍然是一个巨大的挑战,使得无法定量和准确地描述HEA基催化剂的结构-性能关系。在该项目中,开发了一种变革性的技术,以实现具有受控成分和表面结构的HEA纳米晶体的确定性甚至可预测的合成。所得纳米晶可直接作为先进的催化材料,造福美国经济和社会。该项目的多学科和协作性质提供了一个工具,以加强和丰富学生的教育和培训经验,同时扩大代表性不足的群体在尖端研究的参与。特别是,学生们将直接学习如何以两倍的速度发现和开发先进的催化材料。该项目的结果也适用于加强课堂教学,包括演示和实验的发展,以更好地说明科学和工程的关键概念。本研究代表了开发具有良好定义和可控的组成和表面结构的单相HEA纳米晶体的第一次尝试。传统上,金属纳米晶体的胶体合成涉及金属前体的一次性注射。当直接应用于双金属或多金属体系时,这样的方案容易失败,因为不同的前体具有不同的还原动力学,并且它们在反应溶液中的瞬时浓度将随反应时间不同地衰减。与传统方法不同,研究人员将不同前体的溶液逐滴共滴定到反应溶液中,使得每种前体的瞬时浓度在整个合成过程中保持在预定义的稳定状态。因此,金属原子以稳定的、预先指定的速率从不同的前体产生,用于产生具有均匀组成的HEA纳米晶体,其中原子比由其前体在稳定状态下的还原速率确定。当共形沉积在具有不同形状的预成型种子上时,作为几个原子层厚度的覆盖层,获得了具有良好定义的小面的HEA纳米晶体。可以选择性地蚀刻掉晶种以释放HEA覆盖层作为纳米片。在三个原子层的厚度下,纳米片非常适合通过电子显微镜和光谱法解析成分和表面结构。同时,HEA纳米晶体被测试用于催化反应,重点是鉴定对氧还原和键选择性氢化具有最佳活性和耐久性的催化剂。该合成方法还可以扩展到加速其他类型的纳米材料的合理开发,这些纳米材料具有复杂的组成,适用于一系列应用,包括与化学生产,石油工业,国家安全和公共卫生相关的应用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Younan Xia其他文献

Nanofibers: Generation of Electrospun Nanofibers with Controllable Degrees of Crimping Through a Simple, Plasticizer-Based Treatment (Adv. Mater. 16/2015)
纳米纤维:通过简单的增塑剂处理生成具有可控卷曲程度的静电纺丝纳米纤维(Adv. Mater. 16/2015)
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenying Liu;Justin H. Lipner;Christine H. Moran;Liangzhu Feng;Xiyu Li;S. Thomopoulos;Younan Xia
  • 通讯作者:
    Younan Xia
Synthesis and characterization of metal nanostructures with hollow interiors
内部空心金属纳米结构的合成与表征
  • DOI:
    10.1117/12.504815
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yugang Sun;Younan Xia
  • 通讯作者:
    Younan Xia
Facile Synthesis of Pt Icosahedral Nanocrystals with Controllable Sizes for the Evaluation of Size‐Dependent Activity toward Oxygen Reduction
轻松合成尺寸可控的 Pt 二十面体纳米晶体,用于评估尺寸依赖性的氧还原活性
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Ming Zhao;J. Holder;Zitao Chen;Minghao Xie;Zhenming Cao;M. Chi;Younan Xia
  • 通讯作者:
    Younan Xia
Marine-cloud brightening: an airborne concept
海洋云增亮:机载概念
  • DOI:
    10.1088/2515-7620/ad2f71
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    C. Claudel;A. Lockley;F. Hoffmann;Younan Xia
  • 通讯作者:
    Younan Xia
Fabrication of cell patches using scaffolds with a hexagonal array of interconnected pores (SHAIPs)
使用具有六角形互连孔阵列 (SHAIP) 的支架制造细胞贴片

Younan Xia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Younan Xia', 18)}}的其他基金

Noble-Metal Nanocrystals in Metastable Phases
亚稳态贵金属纳米晶体
  • 批准号:
    2105602
  • 财政年份:
    2022
  • 资助金额:
    $ 63.53万
  • 项目类别:
    Continuing Grant
Rational Synthesis of Alloy Nanocrystals with Controlled Compositions and Facets for Electrocatalysis
电催化用可控成分和晶面的合金纳米晶的合理合成
  • 批准号:
    2219546
  • 财政年份:
    2022
  • 资助金额:
    $ 63.53万
  • 项目类别:
    Standard Grant
Fabrication and Scalable Production of Nanobottles
纳米瓶的制造和规模化生产
  • 批准号:
    2137669
  • 财政年份:
    2021
  • 资助金额:
    $ 63.53万
  • 项目类别:
    Standard Grant
Metal-Sensitive Functionalization and Self-Assembly of Bimetallic Nanocrystals
双金属纳米晶的金属敏感功能化和自组装
  • 批准号:
    2002653
  • 财政年份:
    2021
  • 资助金额:
    $ 63.53万
  • 项目类别:
    Standard Grant
Bimetallic Janus Nanocrystals and Their Derivatives
双金属Janus纳米晶及其衍生物
  • 批准号:
    1804970
  • 财政年份:
    2018
  • 资助金额:
    $ 63.53万
  • 项目类别:
    Standard Grant
Continuous and Scalable Manufacturing of Platinum-Nickel Nanocatalysts for Polymer Electrolyte Membrane Fuel Cells
用于聚合物电解质膜燃料电池的铂镍纳米催化剂的连续和规模化制造
  • 批准号:
    1634687
  • 财政年份:
    2016
  • 资助金额:
    $ 63.53万
  • 项目类别:
    Standard Grant
Atomic Layer-by-Layer Deposition of Pt on Pd Nanocrystals with Well-Controlled Facets
晶面可控的 Pd 纳米晶体上 Pt 原子层沉积
  • 批准号:
    1505441
  • 财政年份:
    2015
  • 资助金额:
    $ 63.53万
  • 项目类别:
    Standard Grant
Towards a Quantitative Knob for Controlling the Shape of Noble-Metal Nanocrystals
用于控制贵金属纳米晶体形状的定量旋钮
  • 批准号:
    1505400
  • 财政年份:
    2015
  • 资助金额:
    $ 63.53万
  • 项目类别:
    Continuing Grant
Seeded Growth of Noble-Metal Nanocrystals
贵金属纳米晶体的种子生长
  • 批准号:
    1215034
  • 财政年份:
    2012
  • 资助金额:
    $ 63.53万
  • 项目类别:
    Continuing Grant
Seeded Growth of Noble-Metal Nanocrystals
贵金属纳米晶体的种子生长
  • 批准号:
    1104614
  • 财政年份:
    2011
  • 资助金额:
    $ 63.53万
  • 项目类别:
    Continuing Grant

相似国自然基金

控制晶界特征分布提高Alloy-N合金抗Te致晶界脆性开裂性能的研究
  • 批准号:
    51671122
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
原子尺度上Alloy 690腐蚀动力学机理的量子力学定量研究
  • 批准号:
    51301132
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 63.53万
  • 项目类别:
    Standard Grant
CAREER: Computational Design of Single-Atom Sites in Alloy Hosts as Stable and Efficient Catalysts
职业:合金主体中单原子位点的计算设计作为稳定和高效的催化剂
  • 批准号:
    2340356
  • 财政年份:
    2024
  • 资助金额:
    $ 63.53万
  • 项目类别:
    Continuing Grant
Atomic scale reactivity of small islands of a bimetallic alloy on ceria to small molecules investigated by ultrahigh resolution atomic force microscopy
通过超高分辨率原子力显微镜研究二氧化铈上双金属合金小岛对小分子的原子尺度反应性
  • 批准号:
    24K01350
  • 财政年份:
    2024
  • 资助金额:
    $ 63.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
ICF Mechanical Property Optimisation of Magnesium Alloy Wires for Bioresorbable Vascular Scaffolds for the Treatment of Peripheral Arterial Disease
用于治疗外周动脉疾病的生物可吸收血管支架镁合金丝的 ICF 机械性能优化
  • 批准号:
    MR/Z503897/1
  • 财政年份:
    2024
  • 资助金额:
    $ 63.53万
  • 项目类别:
    Research Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 63.53万
  • 项目类别:
    Standard Grant
Coventry University and Advanced Alloy Services Limited - KTP 23_24R1
考文垂大学和先进合金服务有限公司 - KTP 23_24R1
  • 批准号:
    10070226
  • 财政年份:
    2024
  • 资助金额:
    $ 63.53万
  • 项目类别:
    Knowledge Transfer Partnership
Segregation of alloy and dopant atoms at defects in nitride materials
氮化物材料缺陷处合金和掺杂原子的偏析
  • 批准号:
    EP/Y00423X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 63.53万
  • 项目类别:
    Research Grant
Segregation of alloy and dopant atoms at defects in nitride materials
氮化物材料缺陷处合金和掺杂原子的偏析
  • 批准号:
    EP/Y004213/1
  • 财政年份:
    2024
  • 资助金额:
    $ 63.53万
  • 项目类别:
    Research Grant
Clarification of the aluminum alloy deposition mechanism under the electromagnetic circumstance in alternate current pulsed gas metal arc process applied wire arc additive manufacturing (WAAM)
阐明交流脉冲气体金属电弧工艺应用电弧增材制造(WAAM)电磁环境下铝合金沉积机理
  • 批准号:
    24K17530
  • 财政年份:
    2024
  • 资助金额:
    $ 63.53万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Electro-Shock Synthesis of High Entropy Alloy Nanoparticles from Sub-Femtoliter Reactors
职业:亚飞升反应器电冲击合成高熵合金纳米粒子
  • 批准号:
    2327563
  • 财政年份:
    2023
  • 资助金额:
    $ 63.53万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了