Experiments on very large structures in fully developed turbulent pipe flow
充分发展的湍流管流中超大型结构的实验
基本信息
- 批准号:315905061
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The present work aims at investigation of turbulent pipe flow at high Reynolds numbers and low Mach numbers. During the recent years there has been an increasing interest in observation and understanding of large scale turbulent coherent structures, which are commonly known as Large and Very Large Scale Motions (LSM and VLSM). Nevertheless, a solid definition of their nature and vivid understanding of their evolution is still incomplete. Therefore, this study will focus on clarifying the nature and origin of LSM and VLSM as well as describing and identifying them in a quantitative manner. To this end, experiments and numerical computations (together with possible partners within the SPP) will be performed and matched as closely as possible. Experiments at Cottbus Large Pipe Test Facility (CoLa-Pipe), which was used successfully along the first phase, will be conducted at bulk Reynolds numbers of 6x10E4 ≤ Re b ≤ 1x10E6 (based on pipe diameter D and bulk velocity Ub) and Mach numbers Ma < 0.23, measuring turbulent flow properties using miniaturized Hot Wire Anemometry (HWA), high speed Particle Image Velocimetry (PIV) and Shake The Box (STB) particle tracking technique (in collaboration with DLR, A. Schröder).This proposal aims at two prominent objectives. Both objectives build on our findings in the first phase of this study and they will expand our understanding of turbulent structures using the measurement techniques which provide higher spatial and temporal resolutions. Our first goal is to clarify the uncertainties concerning scaling of structural turbulence properties using miniaturized HWA and 3D high resolution profile measurements. The second goal is to quantify the kinematics and dynamics of large-scale coherent structures. The length scales, energy contents and wall-normal locations of such structures have been already determined in pre-multiplied energy spectra during the first phase of this study. In the second phase, we will extract low order subspaces of highly dimensional turbulent flow, from 2D and 3D time-resolved measurements on a moving frame of reference by applying a Characteristic DMD (in collaboration with TU Berlin, J. Sesterhenn). Optimized combinations of extracted subspaces with long life times will form reduced order models, which accommodate structures that are known to be responsible for the formation of the spectral peaks. Life times and spatio-temporal evolutions of each group of structures will be studied in absence of small-scale structures. This will allow to determine how such structures contribute to turbulence properties such as TKE budgets, Reynolds stress and viscous shear stress.
本文研究了高雷诺数、低马赫数条件下的圆管湍流流动。近几年来,人们对大尺度湍流相干结构的观测和理解越来越感兴趣,这些结构通常被称为大尺度和超大尺度运动(LSM和VLSM)。然而,对其性质的确切定义和对其演变的生动理解仍然不完整。因此,本研究将致力于澄清LSM和VLSM的性质和起源,并以定量的方式描述和识别它们。为此,将进行实验和数值计算(与SPP内可能的合作伙伴一起),并尽可能匹配。在科特布斯大型管道试验设备上的试验(CoLa-管道),该管道已成功沿着第一阶段使用,将在体积雷诺数为6 × 10 E4 ≤ Re B ≤ 1 × 10 E6时进行(基于管道直径D和体积速度Ub)和马赫数Ma < 0.23,使用小型热线风速仪(HWA)测量湍流特性,高速粒子图像测速(PIV)和摇动盒子(STB)粒子跟踪技术(与DLR,A.这一建议旨在实现两个突出目标。这两个目标建立在我们的研究结果在本研究的第一阶段,他们将扩大我们的理解湍流结构使用的测量技术,提供更高的空间和时间分辨率。我们的第一个目标是澄清的不确定性缩放的结构湍流属性使用小型HWA和三维高分辨率剖面测量。第二个目标是量化大尺度相干结构的运动学和动力学。在本研究的第一阶段,在预乘能谱中已经确定了这种结构的长度尺度、能量含量和壁法线位置。在第二阶段,我们将提取低阶子空间的高维湍流,从2D和3D时间分辨测量的移动参考框架上应用特征DMD(与TU柏林,J. Sesterhenn合作)。具有长寿命的提取子空间的优化组合将形成降阶模型,其容纳已知负责形成谱峰的结构。在不存在小尺度结构的情况下,研究各组结构的寿命和时空演化。这将允许确定这些结构如何有助于湍流特性,如TKE预算,雷诺应力和粘性剪切应力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Christoph Egbers其他文献
Professor Dr.-Ing. Christoph Egbers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Christoph Egbers', 18)}}的其他基金
Sensors and exposition analyses for aerosol transport in dynamic situations
动态情况下气溶胶传输的传感器和暴露分析
- 批准号:
469048625 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grants
Angular momentum transport in a stratified Taylor-Couette experiment with applications to accretion disks
分层泰勒-库埃特实验中的角动量传输及其在吸积盘中的应用
- 批准号:
251213433 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Gemeinsame Datenbasis, Gastwissenschaftler und Workshops
通用数据库、客座科学家和研讨会
- 批准号:
154236860 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Units
Experimental studies of turbulence transitions and transport processes in turbulent Taylor-Couette flow
泰勒-库埃特湍流中湍流转变和传输过程的实验研究
- 批准号:
153990664 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Units
Referenzexperiment für Untersuchungen der Dynamik und Koexistenz von großräumigen und kleinskaligen Strömungsstrukturen am Beispiel barokliner und Schwerewellen
以斜压波和重力波为例研究大尺度和小尺度流动结构的动力学和共存的参考实验
- 批准号:
42614931 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Priority Programmes
Nichtlineare Dynamik im rotierenden konzentrischen Zylinderspalt unter Einfluss von thermischer Konvektion
热对流影响下旋转同心圆柱间隙的非线性动力学
- 批准号:
5413781 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Research Grants
Untersuchungen zum Verhalten von baroklinen Instabilitäten im starr rotierenden, innen gekühlten Zylinderspalt
研究刚性旋转、内部冷却的圆柱间隙中斜压不稳定性的行为
- 批准号:
5171136 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Research Grants
Untersuchungen zum Bifurkationsverhalten der Taylor-Couette Strömungen mit asymmetrischen Randbedingungen
非对称边界条件下 Taylor-Couette 流分叉行为的研究
- 批准号:
5388981 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Research Grants
Experimental investigations on turbulent Taylor-Couette flows in very wide gaps (part 2)
极宽间隙中泰勒-库埃特湍流的实验研究(第 2 部分)
- 批准号:
422002662 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Student Travel Support for the 50th International Conference on Very Large Databases 2024
2024 年第 50 届超大型数据库国际会议的学生旅行支持
- 批准号:
2422438 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Research Infrastructure: Next-generation Very Large Array Design Activities: 2024-2026
研究基础设施:下一代甚大阵列设计活动:2024-2026
- 批准号:
2334267 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Cooperative Agreement
Student Travel Support for the 49th International Conference on Very Large Databases 2023
2023 年第 49 届超大型数据库国际会议的学生旅行支持
- 批准号:
2326925 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
SHF: Small: Explainable Machine Learning for Better Design of Very Large Scale Integrated Circuits
SHF:小:可解释的机器学习,用于更好地设计超大规模集成电路
- 批准号:
2322713 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Bethe Salpeter Equation Spectra for Very Large Systems with Thousands of Electrons or More
具有数千个或更多电子的超大型系统的 Bethe Salpeter 方程谱
- 批准号:
2245253 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Characterizing the preterm infant skin microbiome and microbial shifts that precede neonatal late onset sepsis (LOS)
描述早产儿皮肤微生物组的特征以及新生儿迟发性败血症 (LOS) 之前的微生物变化
- 批准号:
10664071 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Vera: A new paradigm to enable efficient design of VERy large Aircraft structures - the key for innovative aircraft design concepts
Vera:实现超大型飞机结构高效设计的新范式——创新飞机设计概念的关键
- 批准号:
EP/W022508/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fellowship
Very-large-scale-integration of graphene terahertz modulators for non-invasive imaging - Terachip
用于非侵入性成像的超大规模集成石墨烯太赫兹调制器 - Terachip
- 批准号:
EP/X027643/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
GenSyn: A Cycle for Serial Assembly of Very Large DNA Molecules
GenSyn:非常大的 DNA 分子的串行组装循环
- 批准号:
10552680 - 财政年份:2022
- 资助金额:
-- - 项目类别:
GenSyn: A Cycle for Serial Assembly of Very Large DNA Molecules
GenSyn:非常大的 DNA 分子的串行组装循环
- 批准号:
10369379 - 财政年份:2022
- 资助金额:
-- - 项目类别:














{{item.name}}会员




