Deterministic preparation of single potassium atoms in microtrap arrays for the quantum simulation of spin systems.
用于自旋系统量子模拟的微陷阱阵列中单个钾原子的确定性制备。
基本信息
- 批准号:316159385
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of the proposed project is the study of deterministically prepared Rydberg many-body systems in microtrap arrays. The realization of flexible synthetic quantum magnets will be in the focus of the project. We aim to realize systems with long-range interactions and sizes up to one hundred spins, in which single spins are experimentally observable. To this end, we will advance a recently demonstrated method for the preparation of single atoms in microtraps. We will utilize the special properties of potassium, that is, the ideal internal level-structure for deterministic loading of 1064nm microtraps. By that, we are confident to increase the loading fidelity well beyond the 90% recently demonstrated for Rubidium. Two-dimensional microtrap arrays come with the great advantage of flexible geometry tuning. In particular, they enable the realization of arrays with large distance between the individual traps, such that the strength of the Rydberg-Rydberg interaction between atoms in these traps is in the experimentally accessible range.Based on the microtrap array we will study long-range interacting transverse Ising magnets. Previous experiments on such systems were limited to the regime of very small magnetization or system size. This project will push this limit to enable experiments in regimes that are not accessible by calculations on classical computers. The single atom sensitive detection and the high data rate of the experiment will then allow for a precise characterization of the quantum magnets in- as well as out-of-equilibrium.Furthermore, we will study decoherence in off-resonantly laser coupled Rydberg gases. The advantage of the microtrap array is here the flexible geometry and variable atomic distances for intermediate system sizes. We aim at the in-depth understanding of coherence limiting processes, and their subsequent minimization, in Rydberg dressed systems.The project belongs into the many-body physics category of the GiRyd priority program. We will collaborate with several national groups for the detailed theoretical description of various aspects of the proposed experiments.
该项目的目标是研究微阱阵列中确定性制备的里德伯多体系统。柔性合成量子磁体的实现将是该项目的重点。我们的目标是实现系统的远程相互作用和大小高达100个自旋,其中单自旋实验观察。为此,我们将提出一个最近证明的方法,在微阱中制备单原子。我们将利用钾的特殊性质,即1064 nm微陷阱的确定性加载的理想内部能级结构。这样,我们有信心将加载保真度提高到远超过最近为铷所证明的90%。二维微陷阱阵列具有灵活的几何形状调整的巨大优势。特别是,它们能够实现阵列与大的距离之间的单个陷阱,使这些陷阱中的原子之间的里德伯-里德伯相互作用的强度是在实验上可访问的范围内。基于微陷阱阵列,我们将研究远程相互作用的横向伊辛磁铁。以前对这种系统的实验仅限于非常小的磁化强度或系统尺寸的范围。该项目将推动这一限制,使实验的制度,是无法访问的计算在经典计算机上。单原子灵敏的探测和实验的高数据率将允许量子磁体的精确表征在-以及不平衡。此外,我们将研究在非共振激光耦合里德伯气体的退相干。微阱阵列的优点是在这里的灵活的几何形状和可变的原子距离的中间系统的大小。我们的目标是深入了解相干限制过程,以及随后的最小化,在里德伯dressed系统。该项目属于多体物理类别的GiRyd优先计划。我们将与几个国家小组合作,对拟议实验的各个方面进行详细的理论描述。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Christian Groß其他文献
Professor Dr. Christian Groß的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Christian Groß', 18)}}的其他基金
Non-equilibrium phenomena in Rydberg lattice gases with facilitation constraints.
具有促进约束的里德堡晶格气体中的非平衡现象。
- 批准号:
428276754 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Priority Programmes
Synthetic Quantum Many-Body Systems
合成量子多体系统
- 批准号:
404693470 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Heisenberg Professorships
Single Spin Resolved Quantum Metrology in Optical Lattices
光晶格中的单自旋分辨量子计量
- 批准号:
404723259 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Synthetic Quantum Many-Body Systems (continuation)
合成量子多体系统(续)
- 批准号:
508160770 - 财政年份:
- 资助金额:
-- - 项目类别:
Heisenberg Grants
Quantum-gas mixtures with extreme mass imbalance
质量极度不平衡的量子气体混合物
- 批准号:
521285267 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units
Time reversal in two-dimensional quantum Ising systems
二维量子伊辛系统中的时间反转
- 批准号:
500487922 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units
相似海外基金
Advanced Sample Preparation, Separation and Multiplexed Analysis for In-Depth Proteome Profiling of >1000 Single Cells Per Day
先进的样品制备、分离和多重分析,每天对超过 1000 个单细胞进行深入的蛋白质组分析
- 批准号:
10642310 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Expanding regional capacity for single molecule sequencing through the purchase of the Sequel IIe sequencing system
通过购买 Sequel IIe 测序系统扩大区域单分子测序能力
- 批准号:
10632815 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Multimodal Label-Free Nanosensor for Single Virus Characterization and Content Analysis
用于单一病毒表征和内容分析的多模式无标记纳米传感器
- 批准号:
10641529 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Molecular and functional architecture of a premotor circuit for decision making
用于决策的前运动电路的分子和功能架构
- 批准号:
10651389 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Mechanistic studies of the genetic contribution of desmoplakin to pulmonary fibrosis in alveolar type 2 cells
桥粒斑蛋白对肺泡2型细胞肺纤维化的遗传贡献机制研究
- 批准号:
10736228 - 财政年份:2023
- 资助金额:
-- - 项目类别:
The Pain in a Dish Assay (PIDA): a high throughput system featuring human stem cell-derived nociceptors and dorsal horn neurons to test compounds for analgesic activity
皿中疼痛测定 (PIDA):一种高通量系统,具有人类干细胞来源的伤害感受器和背角神经元,用于测试化合物的镇痛活性
- 批准号:
10759735 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Safety and Efficacy of Mesenchymal Stem Cells in the Treatment of Chronic Pancreatitis and Its Associated Pain
间充质干细胞治疗慢性胰腺炎及其相关疼痛的安全性和有效性
- 批准号:
10721284 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Using Single Cell Biological Approaches to Understand CNS TB
使用单细胞生物学方法了解中枢神经系统结核
- 批准号:
10739081 - 财政年份:2023
- 资助金额:
-- - 项目类别:














{{item.name}}会员




