Interacting Stationary Rydberg Polaritons in Two Dimensions

二维相互作用的静止里德伯极化子

基本信息

项目摘要

Electromagnetically induced transparency (EIT) involving highlyexcited Rydberg states has become a powerful technique to mediatestrong synthetic interactions between single photons in an atomicmedium. Based upon our experimental and theoretical findings on thenature of the nonlinear, non-local susceptibility under Rydberg-EITconditions during the first funding period of the SPP GiRyd, wepropose to extend our investigations to stationary ground-statepolaritons which acquire interactions through a novel Rydbergdressingscheme. This approach will allow us to study the photondynamics in the two-dimensional geometry transverse to the lightpropagation, and thereby open the door to many-body phenomena byaccommodating unprecedentedly larger number of interactingphotons. Moreover, the use of stationary-light polaritons composed ofground-state excitations yields drastically improved coherenceproperties and enhanced interaction times, while the proposedRydberg-dressing scheme will provide a new level of interactioncontrol in Rydberg-EIT settings and make it possible to realizerepulsive photons for the first time in experiments. The proposedproject thus provides unique opportunities for the exploration of nonequilibriummany-body quantum dynamics and the emergence ofexotic quantum states of light, both in theory and experiment.
电磁感应透明(EIT)是一种利用高激发里德堡态实现单光子强合成相互作用的有效方法。基于我们在SPP GiRyd第一个资助期内对Rydberg-EIT条件下非线性、非局域极化率性质的实验和理论发现,我们提出将我们的研究扩展到通过一种新的Rydbergdressing方案获得相互作用的稳态基态极化激元。这种方法将使我们能够在二维几何中研究光传播的横向光子动力学,从而通过容纳前所未有的大量相互作用光子来打开多体现象的大门。此外,使用由基态激发组成的定常光极化激元产生了显著改善的相干特性和增强的相互作用时间,而所提出的Rydberg-dressing方案将在Rydberg-EIT设置中提供新水平的相互作用控制,并使在实验中首次实现脉冲光子成为可能。因此,该项目为非平衡多体量子动力学的探索和光的奇异量子态的出现提供了独特的机会,无论是在理论上还是在实验上。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Thomas Pohl其他文献

Professor Dr. Thomas Pohl的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

SBIR Phase II: Sodium-Based Solid-State Batteries for Stationary Energy Storage
SBIR第二阶段:用于固定储能的钠基固态电池
  • 批准号:
    2331724
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
Neural Networks for Stationary and Evolutionary Variational Problems
用于稳态和进化变分问题的神经网络
  • 批准号:
    2424801
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
STTR Phase I: ActiveLens: Enabling Stationary Occupancy Detection of Passive Infrared Motion Sensors
STTR 第一阶段:ActiveLens:实现被动红外运动传感器的静止占用检测
  • 批准号:
    2341560
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Non-Stationary Random Dynamical Systems and Applications
非平稳随机动力系统和应用
  • 批准号:
    2247966
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Generative Mapping and Control of Stationary Points in Complex Dynamical Systems
复杂动力系统中驻点的生成映射和控制
  • 批准号:
    EP/X018288/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Potential theoretic approach to quasi-stationary phenomena of Markov processes
马尔可夫过程准平稳现象的潜在理论方法
  • 批准号:
    23KJ0236
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
The Inviscid Limit and Boundary Layer Theory for Stationary Navier-Stokes Flows
稳态纳维-斯托克斯流的无粘极限和边界层理论
  • 批准号:
    2306528
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
A Study on Super-Resolution Technology Using Multi-Channel Simultaneous Sampling for Non-Stationary Signals
非平稳信号多通道同时采样超分辨技术研究
  • 批准号:
    23K03622
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Advanced all-Iron flow batteries for stationary energy storage
用于固定储能的先进全铁液流电池
  • 批准号:
    LP220200874
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Linkage Projects
DISES: Indigenous forest management in a non-stationary climate
疾病:不稳定气候下的本土森林管理
  • 批准号:
    2310797
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了