Non-Stationary Random Dynamical Systems and Applications
非平稳随机动力系统和应用
基本信息
- 批准号:2247966
- 负责人:
- 金额:$ 46.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-15 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Random and unpredictable factors are always present and cannot be completely avoided. Therefore, the development of numerous real-life systems can be more accurately explained through the application of distinct maps, that is, of transformations that vary with time, rather than by repeatedly applying the exact same transformation. It is intuitive to examine these issues using typical sequences of maps, which brings us to the concept of random dynamics. Theory of random dynamical systems goes back to Ulam and von Neumann, as well as to Kakutani. Since then, it turned into a well-developed area of mathematics that has numerous applications. But what if the distribution and strength of the random factors itself does not remain constant, but changes with time? That can be modeled by non-stationary random dynamical systems, and the study of the properties of such systems and of their applications is the main goal of this project. Mentoring students will be an essential part of the project. Numerous questions closely related to the proposed project will be suggested to graduate and undergraduate students initiating and increasing their involvement in research in mathematics.In the first part of the project the goal will be to show that a smooth random dynamical system, under an assumption of absence of invariant measures, must lead to almost sure exponential growth of the norms of random compositions, even in non-stationary cases. Also, moduli of continuity of stationary measures will be studied. The second part of the project will lead to a non-stationary version of the Furstenberg Theorem on random matrix products, that claims that there exists a nonrandom sequence, a non-stationary analog of the Lyapunov exponent, that almost surely describes the behavior of the norms of random matrix products. Non-commutative versions of the Central Limit Theorem, the Iterated Logarithm Law, and other limit theorems will be proven in non-stationary settings, for random matrix products, and, more generally, for random walks on Lie groups. The third part of the project will provide the proof of Spectral and Dynamical Localization for the non-stationary Anderson Model (including the Anderson-Bernoulli case). Besides, the questions on topological structure of the spectrum and essential spectrum of the non-stationary Anderson Model will be addressed. In particular, it will be shown that for a discrete Schrödinger operator with potential given by a sequence of independent identically distributed random variables plus a quasiperiodic background the spectrum must consist of a finite number of intervals, while for a periodic background it can have infinitely many gaps.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随机性和不可预测性因素始终存在,无法完全避免。因此,通过应用不同的地图,即随时间变化的变换,而不是重复应用完全相同的变换,可以更准确地解释许多现实生活中系统的发展。使用典型的映射序列来检查这些问题是直观的,这将我们带入随机动力学的概念。随机动力系统的理论可以追溯到乌兰和冯·诺伊曼,以及卡库塔尼。从那时起,它变成了一个发展良好的数学领域,有着无数的应用。但是,如果随机因素本身的分布和强度并不是恒定的,而是随着时间的变化而变化的,那该怎么办呢?这可以用非平稳随机动力系统来建模,研究这类系统的性质及其应用是本课题的主要目标。指导学生将是该项目的重要组成部分。许多与该项目密切相关的问题将被建议给研究生和本科生,以开始和增加他们在数学研究中的参与。在该项目的第一部分,目标是证明一个光滑的随机动力系统,在没有不变度量的假设下,肯定会导致随机合成的范数几乎肯定地指数增长,即使在非平稳的情况下也是如此。此外,还将研究平稳测度的连续模。项目的第二部分将导致关于随机矩阵乘积的非平稳版本的Furstenberg定理,该定理声称存在一个非随机序列,即Lyapunov指数的非平稳模拟,几乎肯定地描述随机矩阵乘积的范数的行为。中心极限定理、重对数律和其他极限定理的非对易版本将在非平稳设置下被证明,对于随机矩阵乘积,更一般地,对于李群上的随机游动。项目的第三部分将为非平稳的Anderson模型(包括Anderson-Bernoulli情况)提供频谱和动力学局部化的证明。此外,还讨论了非平稳Anderson模型的谱和本质谱的拓扑结构问题。特别是,它将表明,对于具有由独立同分布随机变量序列加上准周期背景给出的势的离散薛定谔算子,频谱必须由有限数量的区间组成,而对于周期背景,它可以有无限多个区间。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anton Gorodetski其他文献
Conservative homoclinic bifurcations and some applications
- DOI:
10.1134/s0081543809040063 - 发表时间:
2010-02-03 - 期刊:
- 影响因子:0.400
- 作者:
Anton Gorodetski;Vadim Kaloshin - 通讯作者:
Vadim Kaloshin
Anton Gorodetski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anton Gorodetski', 18)}}的其他基金
Newhouse Phenomena in Celestial Mechanics and Spectral Theory
天体力学和谱理论中的纽豪斯现象
- 批准号:
1855541 - 财政年份:2019
- 资助金额:
$ 46.65万 - 项目类别:
Continuing Grant
Spectral properties of quasicrystals via dynamical methods
通过动力学方法研究准晶体的光谱特性
- 批准号:
1301515 - 财政年份:2013
- 资助金额:
$ 46.65万 - 项目类别:
Standard Grant
Quantitative characteristics of the hyperbolic sets arising in conservative dynamics, celestial mechanics, and spectral theory
保守动力学、天体力学和谱理论中出现的双曲集的定量特征
- 批准号:
0901627 - 财政年份:2009
- 资助金额:
$ 46.65万 - 项目类别:
Standard Grant
相似海外基金
The computation of the stationary distribution in random-walk-type Markov chains: via unraveling the trinity of stability
随机游走型马尔可夫链中平稳分布的计算:通过解开稳定性三位一体
- 批准号:
21K11770 - 财政年份:2021
- 资助金额:
$ 46.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stationary analysis of a multi-dimensional reflecting random walk and its application to queueing networks
多维随机游走的平稳分析及其在排队网络中的应用
- 批准号:
19K11845 - 财政年份:2019
- 资助金额:
$ 46.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Tail asymptotics of a stationary distribution of a reflecting random walk and its application to queueing networks
反射随机游走平稳分布的尾部渐近及其在排队网络中的应用
- 批准号:
17K18126 - 财政年份:2017
- 资助金额:
$ 46.65万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Limit Theorems for Non-Stationary and Random Dynamical Systems
非平稳和随机动力系统的极限定理
- 批准号:
1600780 - 财政年份:2016
- 资助金额:
$ 46.65万 - 项目类别:
Continuing Grant
Random locations for stationary processes on unit circle
单位圆上平稳过程的随机位置
- 批准号:
480363-2015 - 财政年份:2015
- 资助金额:
$ 46.65万 - 项目类别:
University Undergraduate Student Research Awards
Tree-valued random processes: tree growth, pruning and stationary processes in spaces of continuum trees
树值随机过程:连续树空间中的树生长、修剪和平稳过程
- 批准号:
EP/K029797/1 - 财政年份:2014
- 资助金额:
$ 46.65万 - 项目类别:
Research Grant
CAREER: Electromechanical Transduction of Vibratory Energy Harvesters in Random and Non-Stationary Environments
职业:随机和非静止环境中振动能量采集器的机电转换
- 批准号:
1055419 - 财政年份:2011
- 资助金额:
$ 46.65万 - 项目类别:
Standard Grant
Study of spectral statistics for random operators in the framework of stationary point process theory
驻点过程理论框架下随机算子谱统计研究
- 批准号:
22540205 - 财政年份:2010
- 资助金额:
$ 46.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: Properties of Strong Mixing Conditions for Stationary Random Sequences
数学科学:平稳随机序列的强混合条件的性质
- 批准号:
8600399 - 财政年份:1986
- 资助金额:
$ 46.65万 - 项目类别:
Standard Grant
A Probabilistic Approach to the Fatigue Crack Propagation under Non-stationary Random Loading
非平稳随机载荷下疲劳裂纹扩展的概率方法
- 批准号:
60460146 - 财政年份:1985
- 资助金额:
$ 46.65万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)














{{item.name}}会员




