Energy-efficient high-performance deep hole drilling using twist drills
使用麻花钻进行节能高性能深孔钻削
基本信息
- 批准号:316702226
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants (Transfer Project)
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Dry cutting and minimum quantity lubrication (MQL) have the potential to reduce the energy consumption of machining processes. The elimination of cooling lubricant in metalworking can generate various environmental and economic benefits, but it also increases the requirements with regard to the cutting technology. In many cases, the machining of deep holes is an exclusion criterion for the introduction of dry and MQL techniques. The high heat input, caused by the inner cutting zone within the workpiece, and particularly the challenging chip evacuation in case of high length-to-diameter ratios are two problems in deep hole drilling, which can originate insufficient process reliability and thus a decision against the introduction of dry machining or MQL. Based on the fundamental investigations in deep hole drilling of aluminium casting under MQL, different solutions are transferred to new applications and optimized in this knowledge transfer project. The main objective is to enable the energy-efficient high-performance MQL deep hole drilling for complex components made of steel, which is still one of the most important structural materials. HPM Technology from Münsingen works on the MQL technique and develops a new MQL mixing nozzle plus device as well as new cooling strategies. Thereby the low cooling effect has to be enhanced by innovative fluids without reducing the good lubrication capability of common MQL. High-performance twist drills with a length-to-diameter ratio of up to l/D = 60 are developed particularly for the application under MQL by the second project partner Miller from Altenstadt. The technological process development at the ISF is linked to an innovative method for simulation-based compensation of the resulting straightness deviation, which is often a critical quality feature in deep hole drilling operations. The close collaboration with the industrial partners allows both, holistic and detailed analysis of the demanding deep hole drilling process and the corresponding components. The developed solutions should enhance the current state of the art and enable wide industrial application of the high-performance deep hole drilling under energy-efficient MQL. To eliminate the existing obstacles regarding the MQL, the developments are validated on complex demonstrator parts.
干切削和最小量润滑(MQL)具有降低加工过程能耗的潜力。在金属加工中消除冷却润滑剂可以产生各种环境和经济效益,但它也增加了对切削技术的要求。在许多情况下,深孔加工是引入干式和MQL技术的排除标准。由工件内切削区引起的高热量输入,特别是在长径比高的情况下具有挑战性的排屑是深孔钻削中的两个问题,这可能导致工艺可靠性不足,因此决定不引入干式加工或MQL。基于对MQL下铝铸件深孔钻削的基础研究,在该知识转移项目中,不同的解决方案被转移到新的应用中并进行优化。其主要目标是实现高能效高性能MQL深孔钻削,用于钢制成的复杂部件,钢仍然是最重要的结构材料之一。来自Münsingen的HPM Technology致力于MQL技术,并开发了一种新的MQL混合喷嘴和设备以及新的冷却策略。因此,必须通过创新的流体来增强低冷却效果,而不会降低普通MQL的良好润滑能力。来自Altenstadt的第二个项目合作伙伴米勒专门为MQL下的应用开发了长径比高达l/D = 60的高性能麻花钻。ISF的工艺流程开发与一种基于仿真的直线度偏差补偿创新方法有关,直线度偏差通常是深孔钻削操作中的关键质量特征。通过与工业合作伙伴的密切合作,我们可以对要求苛刻的深孔钻削工艺和相应部件进行全面而详细的分析。所开发的解决方案将提升当前的技术水平,并在节能MQL下实现高性能深孔钻削的广泛工业应用。为了消除现有的障碍,有关MQL的发展进行了验证复杂的演示部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Dirk Biermann其他文献
Professor Dr.-Ing. Dirk Biermann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Dirk Biermann', 18)}}的其他基金
Fundamental investigations on the effect of structured functional surfaces of milling tools regarding process dynamics
铣削刀具结构化功能表面对工艺动力学影响的基础研究
- 批准号:
426468684 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Research Grants
Fundamental investigations on the development of a single-phase CO2-lubricant solution to support deep-hole drilling processes for difficult to cut materials by using a cryogenic CO2 snow-lubricant-jet
开发单相 CO2 润滑剂解决方案以支持使用低温 CO2 雪润滑剂射流进行难切削材料的深孔钻削工艺的基础研究
- 批准号:
452408713 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Research Grants
Simulation-based design of high performance internal grinding processes
基于仿真的高性能内圆磨削工艺设计
- 批准号:
403857741 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants (Transfer Project)
Fundamental analysis of surface finishing using flexible foams coated with diamonds
使用涂有金刚石的软质泡沫进行表面精加工的基础分析
- 批准号:
423137098 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Process parameters correlated characterization of the corrosion fatigue behavior of post-treated ZnAl-coated arc-sprayed systems
后处理 ZnAl 涂层电弧喷涂系统腐蚀疲劳行为的工艺参数相关表征
- 批准号:
426365081 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Lightweight and vibration reduced hybrid FRP-metal drill tubes with structure-integrated sensor technology for BTA deep hole drilling processes
轻量化、减振混合 FRP-金属钻管,采用结构集成传感器技术,适用于 BTA 深孔钻削工艺
- 批准号:
426328330 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants (Transfer Project)
Fundamental analysis of the machining process of a composite material made of concrete andCFRP with diamond grinding tools
金刚石磨具加工混凝土与CFRP复合材料的工艺基础分析
- 批准号:
391502479 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Fundamental Investigations on the frictional contact in the working zone in machining processes
加工过程中工作区摩擦接触的基础研究
- 批准号:
404632185 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Geometrically defined surface structuring for the form-locked bonding of thermal sprayed coatings
用于热喷涂涂层的形状锁定粘合的几何定义的表面结构
- 批准号:
380444554 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Process and tool development of single lip drills due to an optimisation of the circumferential shape and surface topography
通过优化圆周形状和表面形貌而开发单唇钻头的工艺和工具
- 批准号:
385966032 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants (Transfer Project)
相似国自然基金
固定参数可解算法在平面图问题的应用以及和整数线性规划的关系
- 批准号:60973026
- 批准年份:2009
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
A next-generation extendable simulation environment for affordable, accurate, and efficient free energy simulations
下一代可扩展模拟环境,可实现经济、准确且高效的自由能源模拟
- 批准号:
10638121 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Integrated Event-Based SoC: Revolutionizing Sensor and AI Processor Performance with Low-Latency, Energy-Efficient Neuromorphic Computing
基于事件的集成 SoC:通过低延迟、节能的神经拟态计算彻底改变传感器和 AI 处理器的性能
- 批准号:
10072308 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant for R&D
Integrated Optics for High Performance and Energy Efficient Processors
用于高性能和高能效处理器的集成光学器件
- 批准号:
RGPIN-2021-04140 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
SBIR Phase II: High Performance Microalgae Building Enclosures for an Energy Efficient Retrofitting Application
SBIR 第二阶段:用于节能改造应用的高性能微藻建筑外壳
- 批准号:
2151666 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Cooperative Agreement
High performance and energy efficient deep learning processor design
高性能、高能效深度学习处理器设计
- 批准号:
RGPIN-2018-06317 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
CRII: CNS: Auction Mechanism Design for Energy-Efficient High Performance Computing
CRII:CNS:节能高性能计算的拍卖机制设计
- 批准号:
2300124 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
High performance and energy efficient deep learning processor design
高性能、高能效深度学习处理器设计
- 批准号:
RGPIN-2018-06317 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
SHF: Small: Holistic Design of High-performance and Energy-efficient Accelerators for Graph Neural Networks
SHF:小型:图神经网络高性能、高能效加速器的整体设计
- 批准号:
2131946 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
CRII: CNS: Auction Mechanism Design for Energy-Efficient High Performance Computing
CRII:CNS:节能高性能计算的拍卖机制设计
- 批准号:
2104925 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Integrated Optics for High Performance and Energy Efficient Processors
用于高性能和高能效处理器的集成光学器件
- 批准号:
RGPIN-2021-04140 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual