Needle-free microfluidic vaccine/drug delivery
无针微流控疫苗/药物输送
基本信息
- 批准号:21H01253
- 负责人:
- 金额:$ 10.57万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2021
- 资助国家:日本
- 起止时间:2021-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The goal of the research for year 2022 (R 4) was defined as investigation of nanosecond-pulsed-electric-field induced cavitation/shock wave streaming microjet; quantitative evaluation of in-vitro and ex-vivo deliveries; and publication.According to the plan, electrodes with minimize erosion and appropriate nozzle configuration for nanosecond pulse discharge microjet delivery were designed and tested. The ultra-high-speed real-time highly magnified optical setup, which was constructed last year, was used to evaluate the microfluidic and flow physics of the electric discharge induced microstreaming for different applied energies. A manuscript from results has been prepared for submission to a high impact journal. Experiments were performed to evaluate microjet penetration depth and volume in ex-vivo vaccine/drug deliveries. Experiments have been continued to conjugate new protein nanoparticles to minimize the drug/vaccine volume, a new manuscript from the results has been prepared.For quantitative evaluation, in-vitro and ex-vivo microscopic visualization of microjets in skin, soft tissue, and tumor models were performed. In-vivo experiments were performed to understand effects of microjet and shock waves microstreaming on cells. The interesting results was published in an article, additional manuscript has been prepared and is under submission. Histological evaluations of ex-vivo samples have been underway.
2022年(R4)的研究目标是研究纳秒脉冲电场诱导的空化/冲击波流动微射流,定量评价离体和体外输送,并发表论文。根据该计划,设计并测试了具有最小腐蚀的电极和适合纳秒脉冲放电微射流的喷嘴结构。去年建造的超高速实时高度放大光学装置用于评估不同施加能量的放电诱导微流的微流体和流动物理。已经编写了一份成果手稿,准备提交给一份影响力很大的期刊。进行实验以评估在离体疫苗/药物递送中的微射流穿透深度和体积。为了定量评价微射流在皮肤、软组织和肿瘤模型中的体外和离体显微成像,我们对微射流在皮肤、软组织和肿瘤模型中的作用进行了研究。进行了体内实验,以了解微射流和冲击波微流对细胞的影响。有趣的结果发表在一篇文章中,补充手稿已经编写并正在提交中。离体样本的组织学评价正在进行中。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Achieving non-invasive therapy and drug/vaccine delivery: Challenges and prospects
实现非侵入性治疗和药物/疫苗输送:挑战和前景
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Saho Ikeda;Masaya Hatanaka;Shinji Koganezawa;Shohei Kawada;Renguo Lu;Hiroshi Tani;Norio Tagawa;Hamid Hosano
- 通讯作者:Hamid Hosano
Pulsed Power and Bioelectrics for Medial and Environmental Applications
用于医疗和环境应用的脉冲功率和生物电
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:T.ICHIMURA;C.INOUE and G.KUWABARA;Hamid Hosano
- 通讯作者:Hamid Hosano
Efficacy of shock waves and expansion waves generated by nanosecond pulsed electric discharges for permeabilizing cells and delivering drugs
纳秒脉冲放电产生的冲击波和膨胀波对细胞透化和药物输送的功效
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ryuichi Nakajo;Nushin Hosano;Ryosuke Inoue;Takashi Sakugawa;Hamid Hosano
- 通讯作者:Hamid Hosano
Self-assembled uniform keratin nanoparticles as building blocks for nanofibrils and nanolayers derived from industrial feather waste
- DOI:10.1016/j.jclepro.2021.130331
- 发表时间:2022-01-04
- 期刊:
- 影响因子:11.1
- 作者:Pakdel, Mona;Moosavi-Nejad, Zahra;Hosano, Hamid
- 通讯作者:Hosano, Hamid
Nanoparticle targeted drug delivery with nanosecond pulsed electric discharge induced shock waves
纳秒脉冲放电诱导冲击波纳米颗粒靶向药物输送
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ryosuke Inoue;Nushin Hosano;Ryuichi Nakajo;Hamid Ghandehari;Hamid Hosano
- 通讯作者:Hamid Hosano
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ホサノ ハミド其他文献
ホサノ ハミド的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ホサノ ハミド', 18)}}的其他基金
Needle-free microfluidic vaccine/drug delivery
无针微流控疫苗/药物输送
- 批准号:
23K20915 - 财政年份:2024
- 资助金额:
$ 10.57万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
The development of Image-activated droplet sorter for isolating drug-resistant cancer cells
用于分离耐药癌细胞的图像激活液滴分选仪的开发
- 批准号:
22KJ0879 - 财政年份:2023
- 资助金额:
$ 10.57万 - 项目类别:
Grant-in-Aid for JSPS Fellows
完全な定量真度を有したddPCR分析法の確立
完全定量准确的ddPCR分析方法的建立
- 批准号:
22H02110 - 财政年份:2022
- 资助金额:
$ 10.57万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Principal of on-chip mechno-index activated cell sorting for understanding protoplast regeneration
用于了解原生质体再生的片上机械索引激活细胞分选原理
- 批准号:
22H01453 - 财政年份:2022
- 资助金额:
$ 10.57万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Scale effects on electrohydrodynamic conduction pumping
电流体动力传导泵的尺度效应
- 批准号:
21K14075 - 财政年份:2021
- 资助金额:
$ 10.57万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
自立的マイクロフルイディックプロセッサの構築
构建自主微流体处理器
- 批准号:
21K18840 - 财政年份:2021
- 资助金额:
$ 10.57万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
バイポーラ電気化学を基礎とした集積化センシングシステムの構築
基于双极电化学的集成传感系统的构建
- 批准号:
21H01958 - 财政年份:2021
- 资助金额:
$ 10.57万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
To elucidate the microbial interactions of polycyclic aromatic hydrocarbon (PAH) degrading communities by using microfluidics system
利用微流体系统阐明多环芳烃(PAH)降解群落的微生物相互作用
- 批准号:
21K14768 - 财政年份:2021
- 资助金额:
$ 10.57万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of a gas-liquid-solid multiphase flow simulation method for evaluation of micro-fluidic devices
开发用于评估微流体装置的气-液-固多相流模拟方法
- 批准号:
20K04297 - 财政年份:2020
- 资助金额:
$ 10.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Functional analysis of autoantigen-reactive B cells in systemic sclerosis by ultra-sensitive protein analysis using microfluidics.
使用微流体进行超灵敏蛋白质分析,对系统性硬化症中自身抗原反应性 B 细胞进行功能分析。
- 批准号:
19K08787 - 财政年份:2019
- 资助金额:
$ 10.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a novel mass analysis approach on the basis of mechanical deformation induced by gas flow in a micron channel
开发基于微米通道中气流引起的机械变形的新型质量分析方法
- 批准号:
19KK0141 - 财政年份:2019
- 资助金额:
$ 10.57万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))