Lowering operation temperatures of protonic ceramic fuel cells by proton-pumping effects

通过质子泵浦效应降低质子陶瓷燃料电池的工作温度

基本信息

  • 批准号:
    21H02035
  • 负责人:
  • 金额:
    $ 11.23万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2021
  • 资助国家:
    日本
  • 起止时间:
    2021-04-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

水素透過膜支持型燃料電池(HMFC)は水透過合金/電解質膜-ヘテロ界面での酸化物イオンブロッキングにより発現するプロトンポンピング効果を発現し、高い出力を生むことが知られている。水素透過膜支持型燃料電池(HMFC)における、プロトンポンピング効果の最大化を目標に以下の検討を行った。第一に電解質酸化物の酸素欠損量がプロトンポンピングに及ぼす影響を実証するために,高酸素欠損量をもつBaCexZr0.5-xSc0.5O2.75(x = 0 and 0.2)を電解質としたHMFCについて実験による解析を行った。一般的にCe置換を行うと伝導率が上がり、セル出力は増加することが知られている。しかしながら、HMFCの出力はプロトンポンピング効果によって支配されるため,Ceドープによる出力増加は起こらないことが分かった。第二に、hMFCの実用化に向けた最大の課題であるPd水素アノードの代替材料について検討を行った。その有力な候補であるV1-xNix合金をPd代替アノードとして検討を行った。その結果、いずれの合金においても、金属酸化物電解質薄膜を300℃以下で製膜し、また320℃以下で発電したとき、高い出力が得られることが分かった。これらの条件以上に温度を上げると、合金の酸化による出力劣化が顕著に起こるとわかった。
Water permeable membrane-supported fuel cells (HMFCs) are characterized by the presence of acidic compounds at the water permeable alloy/electrolyte membrane-to-interface, and the generation of high output. Water permeable membrane supported fuel cells (HMFCs) are discussed below for the purpose of maximizing their performance. In the first case, the acid deficiency of electrolyte acid compound is determined by BaCexZr0.5-xSc0.5O2.75(x = 0 and 0.2) and the analysis of electrolyte acid deficiency is performed. The general Ce substitution is carried out by increasing the conductivity and increasing the output. The output of HMFC will be increased from the beginning to the end. Second, the biggest problem in the application of hMFC is the investigation of the substitution of Pd element. A strong candidate for Pd is proposed. As a result, the alloy film and the metal oxide electrolyte film are prepared at temperatures below 300℃, and the electricity is generated at temperatures below 320℃. The temperature of the alloy is higher than that of the alloy.

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
プロトンセラミクスセルにおけるアノード構造の重要性
质子陶瓷电池中阳极结构的重要性
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pawel Botwina;Magdalena Obloza;Maria Zatorska-Plachta;Kamil Kaminski;Masanobu Mizusaki;Shin-Ichi Yusa;Krzysztof Szczubialka;Krzysztof Pyrc;Maria Nowakowska;青木芳尚
  • 通讯作者:
    青木芳尚
Development of Hydrogen-Permeable Metal Support Electrolysis Cells
透氢金属支撑电解槽的研制
  • DOI:
    10.1021/acsaem.1c03313
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Aoki Yoshitaka;Nishimura Shinichi;Jeong SeongWoo;Kitano Sho;Habazaki Hiroki
  • 通讯作者:
    Habazaki Hiroki
Numerical Simulation of OXIDE-ION Blocking Effect in Hydrogen Permeable Metal-Supported FUEL CELL
透氢金属支撑燃料电池中氧离子阻挡效应的数值模拟
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S.W. Jeong;Y. Aoki;H. Habazaki
  • 通讯作者:
    H. Habazaki
DAICHI PCC workshop
DAICHI PCC车间
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    清水啓太;北川大地;小畠誠也;Numerical Analysis of Hydrogen-permeable Metal―Support Fuel cells (HMFCs)
  • 通讯作者:
    Numerical Analysis of Hydrogen-permeable Metal―Support Fuel cells (HMFCs)
The effect of an anode functional layer on the steam electrolysis performances of protonic solid oxide cells
  • DOI:
    10.1039/d1ta02848k
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chunmei Tang;K. Akimoto;Ning Wang;L. Fadillah;Sho Kitano;H. Habazaki;Y. Aoki
  • 通讯作者:
    Chunmei Tang;K. Akimoto;Ning Wang;L. Fadillah;Sho Kitano;H. Habazaki;Y. Aoki
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

青木 芳尚其他文献

ペロブスカイト型BaZr0.5In0.5O2.75-xHy酸水素化物の構造とH-/e-混合伝導性
钙钛矿BaZr0.5In0.5O2.75-xHy氢氧化物的结构和H-/e-混合电导率
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    鳥海 創;小林 玄器;齊藤 高志;神山 崇;酒井 孝明;能村 貴宏;北野 翔;幅崎浩 樹;青木 芳尚
  • 通讯作者:
    青木 芳尚
TiNナノ結晶における水素の拡散機構の第一原理計算による検討
使用第一性原理计算研究 TiN 纳米晶中的氢扩散机制
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    國貞 雄治;青木 芳尚;倉 千晴;朱 春宇;幅崎 浩樹
  • 通讯作者:
    幅崎 浩樹
反応性スパッタ法により作製した窒化物半導体ZrNXにおける水素欠陥生成
反应溅射法制备氮化物半导体ZrNX中氢缺陷的产生
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    齋藤 美玖;朱 春宇;青木 芳尚;幅崎 浩樹
  • 通讯作者:
    幅崎 浩樹
リン酸過剰添加したピロリン酸スカンジウム塩のプロトン伝導性
添加过量磷酸的焦磷酸钪的质子电导率
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    遠藤 大介;北野 翔;幅崎 浩樹;青木 芳尚
  • 通讯作者:
    青木 芳尚
Irナノ粒子を担持した単層WS2ナノシートの水電解特性
负载 Ir 纳米粒子的单层 WS2 纳米片的水电解性能
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    北野 翔;田鎖 玲子;青木 芳尚;幅崎 浩樹
  • 通讯作者:
    幅崎 浩樹

青木 芳尚的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('青木 芳尚', 18)}}的其他基金

バイポーラー固体電解セルの基盤技術創製
创造双极固体电解质电池的基础技术
  • 批准号:
    24H00477
  • 财政年份:
    2024
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
電子―プロトン混合パーコレーション伝導体の創製と電極触媒能
电子-质子混合渗流导体的制备及电催化能力
  • 批准号:
    22686062
  • 财政年份:
    2010
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
導電性アモルファス酸化物の超薄膜からなる規則多孔体の作成
由导电非晶氧化物超薄膜组成的有序多孔体的创建
  • 批准号:
    15750174
  • 财政年份:
    2003
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)

相似海外基金

中温型プロトン伝導性セラミック燃料電池の理論電位達成のための酸素還元触媒の開発
开发氧还原催化剂以实现中温质子传导陶瓷燃料电池的理论潜力
  • 批准号:
    24K08578
  • 财政年份:
    2024
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
次世代燃料電池ITFCを実現する電極反応の全貌解明とその高速化
彻底阐明实现下一代燃料电池ITFC及其加速的电极反应
  • 批准号:
    21H04607
  • 财政年份:
    2021
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
固体酸化物形燃料電池の構成材料の開発と電極反応解析
固体氧化物燃料电池构成材料的开发及电极反应分析
  • 批准号:
    21F20736
  • 财政年份:
    2021
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Analysis of multi-scale mass transport phenomena in catalyst layer for the development of the efficiency of polymer electrolyte fuel cell
分析催化剂层中的多尺度传质现象以提高聚合物电解质燃料电池的效率
  • 批准号:
    18H01364
  • 财政年份:
    2018
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
新規プロトン・電子混合伝導性材料の合成と高効率再生形燃料電池システムの開発
新型质子/电子混合导电材料的合成及高效再生燃料电池系统的开发
  • 批准号:
    18J13401
  • 财政年份:
    2018
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Creation of novel direct alchol fuel cell using biopolymer chitin and Determination of its optimal operating condition
使用生物聚合物甲壳素创建新型直接醇燃料电池并确定其最佳运行条件
  • 批准号:
    18K11741
  • 财政年份:
    2018
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
中温型燃料電池を実現するプロトン伝導性ガラスとプロトン電子混合伝導性電極の開発
开发用于实现中温燃料电池的质子导电玻璃和质子电子混合导电电极
  • 批准号:
    17J07530
  • 财政年份:
    2017
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Molecular design of chemically-stable proton-conducting aromatic polymers for fuel cell membranes
用于燃料电池膜的化学稳定质子传导芳香族聚合物的分子设计
  • 批准号:
    16K18258
  • 财政年份:
    2016
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Nano-assembly method of the electrocatalyst for widening of operation condition of polymer electrolyte fuel cell
拓宽聚合物电解质燃料电池运行条件的电催化剂纳米组装方法
  • 批准号:
    16H06056
  • 财政年份:
    2016
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
規則メソ細孔体および複合高分子膜を駆使した、プロトン・電子共伝導性燃料電池の創製
使用有序介孔材料和复合聚合物膜创建质子电子共导燃料电池
  • 批准号:
    12J06495
  • 财政年份:
    2012
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了