Dynamics of orbits sustained by solar radiation pressure - applications in space exploration and planetary science

太阳辐射压力维持的轨道动力学 - 在空间探索和行星科学中的应用

基本信息

项目摘要

The goal of this project is to explore a natural phenomenon in celestial mechanics - the stable motion of particles in so-called 'dawn/dusk orbits' found in the weak gravity fields of small asteroidal bodies under the presence of radiation pressure. We will investigate the analytical framework in a modified version of Hill's approximation to the restricted Three-body Problem. Numerical integration will be used to find solutions for particle motion, when analytical solutions are not available. We will create Poincaré maps to characterize the many varieties of these orbits, and to study their resilience to perturbing forces. The dawn/dusk orbits may be of interest for spacecraft mission planners and planetary scientists alike. We will focus on small asteroid targets of the Japanese Hayabusa-2-, the NASA OSIRIS REx-, and ESA's Marco-Polo-R missions. We will study the stable motion of spacecraft in such orbits and how these orbits may be used for mapping of the asteroid targets. As these orbits appear to persist over long time scales, they may act as traps for dust particles, which possibly form rings and tori. We will study the possible lifetime of such ring features about dwarf planet Ceres (which has been suggested to eject gas and dust) and selected exoplanets. Since many among the detected exoplanets move close to their host stars, some of which more luminous than the Sun, stellar radiation pressure may be a relevant perturbing force. Estimates for planet sizes by the so-called 'transit-method' may lead to an overestimation of the planet's radius and an underestimation of its specific density if an existing ring feature is not recognized as such.
该项目的目标是探索天体力学中的一种自然现象-在辐射压力存在下,在小行星体的弱重力场中发现的所谓“黎明/黄昏轨道”中粒子的稳定运动。我们将研究希尔对限制性三体问题近似的修改版本中的分析框架。当无法获得解析解时,将使用数值积分来寻找粒子运动的解。我们将创建庞加莱映射来描述这些轨道的许多变化,并研究它们对扰动力的弹性。宇宙飞船使命规划者和行星科学家都可能对黎明/黄昏轨道感兴趣。我们将重点关注日本隼鸟2号、美国宇航局OSIRIS雷克斯和欧空局的马可波罗R任务的小行星目标。我们将研究航天器在这种轨道上的稳定运动,以及如何利用这些轨道来绘制小行星目标的地图。由于这些轨道似乎持续了很长时间,它们可能会成为尘埃颗粒的陷阱,这些尘埃颗粒可能会形成环和环面。我们将研究矮行星谷神星(有人认为它会喷出气体和尘埃)和选定的系外行星的这种环特征的可能寿命。由于许多被探测到的系外行星靠近它们的宿主恒星,其中一些比太阳更明亮,恒星辐射压力可能是一个相关的扰动力。通过所谓的“凌日法”对行星大小的估计可能会导致高估行星的半径,并低估其特定密度,如果现有的环特征不被承认的话。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spacecraft orbit lifetime within two binary near-Earth asteroid systems
  • DOI:
    10.1016/j.pss.2017.07.018
  • 发表时间:
    2017-10
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    F. Damme;H. Hussmann;J. Oberst
  • 通讯作者:
    F. Damme;H. Hussmann;J. Oberst
Terminator Orbits around the Triple Asteroid 2001-SN263: A search for stable motion applicable to the mission ASTER
围绕三重小行星 2001-SN263 的终结者轨道:寻找适用于 ASTER 任务的稳定运动
  • DOI:
    10.5194/epsc2020-835
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wickhusen;G. V. de Brum;Vincent;Hussmann;Oberst
  • 通讯作者:
    Oberst
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Jürgen Oberst其他文献

Professor Dr. Jürgen Oberst的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Jürgen Oberst', 18)}}的其他基金

Evolution and Dynamics of Triple Asteroid Systems
三重小行星系统的演化和动力学
  • 批准号:
    413911837
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Exploration of cometary dust and debris through meteor observations and modelling
通过流星观测和建模探索彗星尘埃和碎片
  • 批准号:
    419276816
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Studies of Phobos polar illumination and thermal conditions
火卫一极地光照和热条件的研究
  • 批准号:
    317685998
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Rotational Parameters and Reference System of Mercury from MESSENGER Laser Altimetry and Stereo Topographic Models
MESSENGER 激光测高和立体地形模型中的水星旋转参数和参考系统
  • 批准号:
    265957274
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Geodesy and Cartography of Phobos
火卫一的大地测量和制图
  • 批准号:
    18489011
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Interior Structure and Seismology of Mars
火星的内部结构和地震学
  • 批准号:
    5334700
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Tidal Deformation of Mercury from Co-registration of Laser Altimeter Profiles and Implications for the Interior Structure of the Planet
激光高度计剖面共同记录的水星潮汐变形及其对行星内部结构的影响
  • 批准号:
    519772434
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Analysis of gradient dynamical systems with noncompact orbits by profile decomposition
轮廓分解分析非紧轨道梯度动力系统
  • 批准号:
    23K03166
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The research on the stability of the density functions for the existence probability of orbits
轨道存在概率密度函数的稳定性研究
  • 批准号:
    23K03185
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Unseen Architectures: Revealing Low Mass Planets on Long Period Orbits
看不见的结构:揭示长周期轨道上的低质量行星
  • 批准号:
    2307467
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of Data-Collection Algorithms and Data-Driven Control Methods for Guaranteed Stabilization of Nonlinear Systems with Uncertain Equilibria and Orbits
开发数据收集算法和数据驱动控制方法,以保证具有不确定平衡和轨道的非线性系统的稳定性
  • 批准号:
    23K03913
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Abelian Varieties, Hecke Orbits, and Specialization
阿贝尔簇、赫克轨道和特化
  • 批准号:
    2337467
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Index Theory, Stability of Orbits and Heteroclinic Phenomenon
指数理论、轨道稳定性和异宿现象
  • 批准号:
    RGPIN-2019-06847
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
The geometry of orbits of noncommutative Hermann actions
非交换赫尔曼作用的轨道几何
  • 批准号:
    22K03285
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Autonomous Guidance, Navigation, and Control of Spacecraft Formation Flying on Highly Elliptical Orbits in the Presence of Gravitational, Third-Body, Drag and Solar Radiation Pressure Perturbations
在存在引力、第三体、阻力和太阳辐射压力扰动的情况下,在高椭圆轨道上飞行的航天器编队的自主制导、导航和控制
  • 批准号:
    570065-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Active Removal and Situational Awareness of Space Debris in Low Earth Orbits
近地轨道空间碎片的主动清除和态势感知
  • 批准号:
    RGPIN-2019-04359
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Orbit Design and Control for Non-Heliocentric Small-Body Missions
非日心小天体任务的轨道设计与控制
  • 批准号:
    22K14424
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了