Topological many-body phases of bosons and fermions in driven optical lattices

驱动光学晶格中玻色子和费米子的拓扑多体相

基本信息

  • 批准号:
    318595601
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Units
  • 财政年份:
    2016
  • 资助国家:
    德国
  • 起止时间:
    2015-12-31 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Since the discovery of the quantum Hall effect, topology has emerged as a central concept for the classification of quantum matter, describing exotic quantum phases beyond the classification via symmetry breaking. The persistent interest is fueled by the discovery of a plethora of effects and by potential applications in metrology and topological quantum computation. Quantum simulation of topological matter using ultracold atoms in optical lattices has become successful using Floquet driving to engineer artificial gauge fields for charge-neutral particles, leading to the realization of paradigmatic topological models. The possibility to combine gauge fields with tunable and strong interactions is at the heart of realizing interacting topological matter such as fractional Chern insulators, and the excellent controllability of cold atom experiments promises to help establishing a comprehensive understanding of these phases.The Hamburg team pioneered e.g. Floquet driven gauge fields in optical lattices and realized for the first time a full momentum-resolved measurement of the Berry curvature, and within the Research Unit the first measurement of the Chern number via the dynamical linking number and via circular dichroism. Furthermore, the team introduced the use of machine learning techniques for an improved identification of topological phase transitions.In the second funding period, the Hamburg project will build on these techniques and will study the rich interplay of topology and interactions both in the weakly- and in the strongly-interacting regimes. We will prepare and characterize many-body phases of bosons and fermions in topological band structures both in equilibrium and via dynamics after quenches. We will implement a hexagonal superlattice, which is vital for the preparation of fractional fillings, but also allows studying topological three-band models in driven optical Kagome lattices. Furthermore, we will implement quasi-disorder and study the interplay with topology and interactions, expecting to observe both topological protection against disorder and 2d topological Anderson insulators. The Hamburg project will strongly collaborate with the theory projects and experimental projects of the Research Unit on both a direct comparison between experimental results and numerical calculations and on the identification of suitable protocols for realizing and characterizing exotic topological phases.
自量子霍尔效应发现以来,拓扑学已经成为量子物质分类的核心概念,通过对称性破缺描述了分类之外的奇异量子相。持续的兴趣是燃料的发现过多的影响和潜在的应用计量学和拓扑量子计算。在光学晶格中使用超冷原子的拓扑物质的量子模拟已经成功地使用Floquet驱动来设计电荷中性粒子的人工规范场,从而实现了范式拓扑模型。将联合收割机规范场与可调和强相互作用结合起来的可能性是实现相互作用拓扑物质(如分数陈氏绝缘体)的核心,而冷原子实验的出色可控性有望帮助建立对这些阶段的全面理解。汉堡团队开创了例如Floquet驱动的光晶格规范场,并首次实现了完整的动量-解决了Berry曲率的测量,并在研究单位内通过动态链接数和圆二色性首次测量陈数。此外,该团队还引入了机器学习技术,以改进拓扑相变的识别。在第二个资助期内,汉堡项目将以这些技术为基础,研究拓扑结构和弱相互作用和强相互作用机制中的相互作用。我们将准备和表征多体相位的玻色子和费米子在拓扑能带结构都在平衡和通过动力学淬火后。我们将实现一个六边形超晶格,这是至关重要的分数填充的准备,但也允许研究拓扑三带模型驱动光学Kagome晶格。此外,我们将实现准无序和研究的相互作用与拓扑结构和相互作用,期望观察到拓扑保护对无序和二维拓扑安德森绝缘体。汉堡项目将与研究单元的理论项目和实验项目密切合作,直接比较实验结果和数值计算,并确定用于实现和表征奇异拓扑相的合适协议。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Klaus Sengstock其他文献

Professor Dr. Klaus Sengstock的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Klaus Sengstock', 18)}}的其他基金

Strong correlations in multi-component quantum gases
多组分量子气体中的强相关性
  • 批准号:
    46321975
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Units
FerMix - Fermionic Mixtures of Ultracold Atoms: Pairing, Superfluidity, and Quantum Phases
FerMix - 超冷原子的费米子混合物:配对、超流性和量子相
  • 批准号:
    44213043
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Experimental investigation of atom guiding in photonic bandgap fibers with Rb atoms
Rb原子光子带隙光纤中原子引导的实验研究
  • 批准号:
    5454312
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Experimental analysis of the interactions of multicomponent Bose-Einstein condensates of Rubidium atoms
铷原子多组分玻色-爱因斯坦凝聚体相互作用的实验分析
  • 批准号:
    5395553
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Experimentelle Untersuchung der Wechselwirkungen mehrkomponentiger Bose-Einstein-Kondensate aus Rubidium-Atomen
铷原子多组分玻色-爱因斯坦凝聚态相互作用的实验研究
  • 批准号:
    5395547
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于序列深度显微图像的非织造滤材三维结构重建
  • 批准号:
    61771123
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Many-Body Theory of Nonlinear Responses in Topological Quantum Materials
拓扑量子材料非线性响应的多体理论
  • 批准号:
    2889795
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
CAREER: Probing and Understanding Nonreciprocal and Topological Radiative Heat Transport in Many-Body Magnetized Systems
职业:探索和理解多体磁化系统中的不可逆和拓扑辐射热传输
  • 批准号:
    2238927
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Symmetry Protected and Topological Phases in Quantum Many Body Systems
量子多体系统中的对称保护相和拓扑相
  • 批准号:
    RGPIN-2018-05136
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Many-Body Echo, Topological Defects and Long-Range Interactions in Dressed Bose-Einstein Condensates
修饰玻色-爱因斯坦凝聚体中的多体回波、拓扑缺陷和长程相互作用
  • 批准号:
    2103542
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Symmetry Protected and Topological Phases in Quantum Many Body Systems
量子多体系统中的对称保护相和拓扑相
  • 批准号:
    RGPIN-2018-05136
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Machine Learning for Quantum Many Body Systems and Topological States
量子多体系统和拓扑状态的机器学习
  • 批准号:
    553852-2020
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Topological and Many-body Localization Phases in Spinor Bose-Hubbard Models
旋量 Bose-Hubbard 模型中的拓扑和多体定位相
  • 批准号:
    20J20715
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Symmetry Protected and Topological Phases in Quantum Many Body Systems
量子多体系统中的对称保护相和拓扑相
  • 批准号:
    RGPIN-2018-05136
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Laser System for Quantum Gas Microscopy of Topological Many-Body States with Cs Atoms
用于铯原子拓扑多体态量子气体显微镜的激光系统
  • 批准号:
    452143229
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Major Research Instrumentation
Symmetry Protected and Topological Phases in Quantum Many Body Systems
量子多体系统中的对称保护相和拓扑相
  • 批准号:
    RGPIN-2018-05136
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了