Quasi One-Dimensional Systems with Nontrivial Topology: Nonequilibrium, Transport and Edge States
具有非平凡拓扑的准一维系统:非平衡、传输和边缘态
基本信息
- 批准号:318596529
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Units
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantum-gas experiments with interacting bosons and fermions in quasi-one dimensional geometries give access to topological properties in several ways. First, flux-ladders are the thin-torus limit of paradigmatic two-dimensional systems that host Quantum-Hall physics such as the Hofstadter model. In the ladder limit, interaction effects on edge states, transport and nonequilibrium properties can be studied both in experiments and in theoretical calculations, allowing for a direct comparison. Second, experiments with one-dimensional superlattices with commensurate wavelengths realize topological charge and spin pumps. Third, extensions of single-particle invariants to the many-body case can be explored in the case of symmetry-protected topological insulators. The goal of this project is to investigate many-body effects in these setups and to elucidate the stability of topological charge pumping and quantum phases of flux ladders in the presence of short-range interactions, disorder and realistic conditions of state-of-the-art experiments.Nonequilibrium physics will play a significant role, both in the context of quantum quenches between phases with different topological properties and for the state-preparation and loading processes in actual experimental protocols. A close contact with experimental teams working on these questions will be established. While charge pumps are operated in the low-frequency regime to ensure adiabaticity, we will also work on developing new schemes for deriving effective Hamiltonians of periodically driven systems at intermediate and high frequencies, exploiting the flow-equation method.
在准一维几何中用相互作用的玻色子和费米子进行量子气体实验,可以通过几种方式获得拓扑性质。首先,磁通阶梯是包含量子霍尔物理学(如霍夫施塔特模型)的典型二维系统的薄环面极限。在阶梯极限中,相互作用对边缘态、输运和非平衡性质的影响可以在实验和理论计算中进行研究,从而可以进行直接比较。第二,一维超晶格的实验实现了拓扑电荷和自旋泵。第三,单粒子不变量的扩展到多体的情况下,可以探索的情况下,保护拓扑绝缘体。该项目的目标是研究这些装置中的多体效应,并阐明在存在短程相互作用、无序和最先进实验的现实条件下,拓扑电荷泵和通量阶梯的量子相位的稳定性。非平衡物理将发挥重要作用,无论是在具有不同拓扑性质的相之间的量子猝灭的背景下,还是在实际实验方案中的状态准备和加载过程中。将与研究这些问题的实验小组建立密切联系。虽然电荷泵在低频范围内运行以确保绝热性,但我们还将致力于开发新的方案,用于在中频和高频下推导周期性驱动系统的有效哈密顿量,利用流量方程方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Fabian Heidrich-Meisner其他文献
Professor Dr. Fabian Heidrich-Meisner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Fabian Heidrich-Meisner', 18)}}的其他基金
Advanced wave-function based methods for electron-phonon coupled systems
基于先进波函数的电子声子耦合系统方法
- 批准号:
229062735 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Units
Eigenstate thermalization in interacting quantum gases in optical lattices
光学晶格中相互作用的量子气体的本征态热化
- 批准号:
521311128 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units
From localization in quenched disorder to new forms of many-body localization
从猝灭紊乱的定位到新形式的多体定位
- 批准号:
521317555 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Quasi-Monte Carlo Simulation for High-dimensional Systems with Complex Structure
复杂结构高维系统的准蒙特卡罗仿真
- 批准号:
18K04602 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Inter-dimensional effects in quasi-relativistic layered systems
准相对论层状系统中的维度间效应
- 批准号:
467057-2014 - 财政年份:2014
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Quasi-Monte Carlo simulation for the design of high-dimensional systems
用于高维系统设计的准蒙特卡罗模拟
- 批准号:
25350439 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ordering and correlation effects in quasi-two-dimensional magnetic and fermionic systems
准二维磁性和费米子系统中的有序和相关效应
- 批准号:
314092-2005 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Ordering and correlation effects in quasi-two-dimensional magnetic and fermionic systems
准二维磁性和费米子系统中的有序和相关效应
- 批准号:
314092-2005 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Ordering and correlation effects in quasi-two-dimensional magnetic and fermionic systems
准二维磁性和费米子系统中的有序和相关效应
- 批准号:
314092-2005 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Theoretical studies of quasi-one-dimensional surface systems: structures, phase transitions and spectoscopic fingerprints
准一维表面系统的理论研究:结构、相变和光谱指纹
- 批准号:
5429334 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Research Grants
Calculation of thermodynamic properties of quasi-one-dimensional magnetic systems and stripe phase super conductors by use of TMR6
利用TMR6计算准一维磁系统和条状相超导体的热力学性质
- 批准号:
5314778 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Priority Programmes
Statistical mechanics of complex systems: quasi two-dimensional suspensions
复杂系统的统计力学:准二维悬浮体
- 批准号:
203313-1998 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Electron Transport in AlAs/GaAs Quasi Two-Dimensional Systems
AlAs/GaAs 准二维系统中的电子传输
- 批准号:
9971021 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Continuing Grant