Coordination Funds

协调基金

基本信息

项目摘要

A long-standing and fascinating question from statistical physics aims at understanding how equilibrium physics —based on macroscopic parameters— emerges from the microscopic dynamics of classical or quantum systems. For closed quantum systems, this question acquires an additional twist since the formalism to describe quantum chaos and irreversibility is still subject to ongoing research. The advent of quantum simulators, most notably, interacting ultracold atoms, has led to an exceptional increase in research activity and groundbreaking experiments in this context. On the theory side, there are strong evidence and criteria for ergodic dynamics in interacting many-body systems, while many-body localization has emerged as a potential exception from thermalization. As an intermediate behavior, systems with constrained dynamics are of central interest. The goal of our initiative is to connect these three pillars of nonequilibrium systems—ergodicity, many-body localization, and constrained dynamics. In particular, we will devise and carry out ultracold atom experiments that qualitatively and quantitatively serve to address and clarify open key questions concerning thermalization time scales, the emergence of hydrodynamics, the existence of many-body localized phases and the characterization of the corresponding transition, and most notably, the realization and study of several instances of constrained dynamics. Concerning constrained dynamics, we will investigate Hilbert-space fragmentation, fractonic systems, kinetically constrained models, and nonequilibrium dynamics in lattice-gauge theories. We will identify experimental setups and suitable observables to study these instances of slow dynamics in detail using the capabilities of ultracold atomic gases. Our experiments include bosonic quantum-gas microsocopes, a fermionic Yb experiment that will realize a lattice-gauge theory, and a heavy-light mixture with an extreme mass imbalance. Our theoretical approaches combine state-of-the-art computational methods, the theory of systems with constrained dynamics and many-body localization, analytical methods, quantum optics, and statistical physics. We expect that the very close experiment theory collaborations in this research unit will lead to novel results that are expected to substantially advance the understanding of nonequilibrium dynamics. As a long-term perspective, our research will have an impact on concepts for controlling thermalization and non-ergodicity to design artificial quantum matter with new properties and functionalities.
统计物理学中一个长期存在且令人着迷的问题旨在理解基于宏观参数的平衡物理学如何从经典或量子系统的微观动力学中出现。对于封闭的量子系统,这个问题获得了额外的扭曲,因为描述量子混沌和不可逆性的形式主义仍然受到正在进行的研究。量子模拟器的出现,最值得注意的是相互作用的超冷原子,导致了这方面的研究活动和开创性实验的异常增加。在理论方面,相互作用的多体系统中有强有力的证据和标准证明遍历动力学,而多体局域化已成为热化的潜在例外。作为一种中间行为,具有约束动力学的系统是人们关注的焦点。我们的目标是连接这三个支柱的非平衡系统遍历性,多体本地化,约束动力学。特别是,我们将设计和进行超冷原子实验,定性和定量地用于解决和澄清有关热化时间尺度,流体力学的出现,多体局部相的存在和相应的过渡的表征,最值得注意的是,约束动力学的几个实例的实现和研究的开放的关键问题。关于约束动力学,我们将研究希尔伯特空间碎裂,分形系统,动力学约束模型,以及格点规范理论中的非平衡动力学。我们将确定实验装置和合适的观测值,以使用超冷原子气体的能力详细研究这些慢动力学的实例。我们的实验包括玻色子量子气体显微镜,一个费米Yb实验,将实现一个格点规范理论,和一个极端的质量不平衡的重轻混合物。我们的理论方法结合了联合收割机最先进的计算方法,约束动力学和多体局域化系统理论,分析方法,量子光学和统计物理。我们希望,在这个研究单位非常密切的实验理论合作将导致新的结果,预计将大大推进非平衡动力学的理解。从长远来看,我们的研究将对控制热化和非遍历性的概念产生影响,以设计具有新特性和功能的人工量子物质。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Fabian Heidrich-Meisner其他文献

Professor Dr. Fabian Heidrich-Meisner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Fabian Heidrich-Meisner', 18)}}的其他基金

Quasi One-Dimensional Systems with Nontrivial Topology: Nonequilibrium, Transport and Edge States
具有非平凡拓扑的准一维系统:非平衡、传输和边缘态
  • 批准号:
    318596529
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Units
Advanced wave-function based methods for electron-phonon coupled systems
基于先进波函数的电子声子耦合系统方法
  • 批准号:
    229062735
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Units
Eigenstate thermalization in interacting quantum gases in optical lattices
光学晶格中相互作用的量子气体的本征态热化
  • 批准号:
    521311128
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Units
From localization in quenched disorder to new forms of many-body localization
从猝灭紊乱的定位到新形式的多体定位
  • 批准号:
    521317555
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Units

相似海外基金

Coordination Funds
协调基金
  • 批准号:
    436278370
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Units
Coordination Funds
协调基金
  • 批准号:
    422443988
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Units
Coordination Funds
协调基金
  • 批准号:
    423033110
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Units
Coordination Funds
协调基金
  • 批准号:
    424702474
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Units
Coordination Funds
协调基金
  • 批准号:
    427459213
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Coordination Funds
协调基金
  • 批准号:
    427358138
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Units
Coordination Funds
协调基金
  • 批准号:
    428795801
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Units
Coordination Funds
协调基金
  • 批准号:
    426581255
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Clinical Research Units
Coordination Funds
协调基金
  • 批准号:
    428918039
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Units
Coordination Funds
协调基金
  • 批准号:
    416092893
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Units
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了