Plasmon Drag Effect enabled by Metallic Nanowires inside Optical Fibers: fundamentals and optoelectronic aspects

光纤内金属纳米线实现的等离子阻力效应:基础知识和光电方面

基本信息

项目摘要

Detecting radiation of various frequencies is key feature of any practically-relevant photonic system. One promising detection scheme is the Photon Drag Effect currently being employed for high-speed detection of mid-infrared radiation. The effect operates by free carrier absorption and a transfer of the photon momentum to electrons, leading to an electrical current. Metals are principally ideal candidates for exploiting the drag effect due to large carrier concentration and high electrical conductivity. However, metals strongly reflect, leading to only little overlap of electromagnetic wave and electrons and thus to negligibly small drag effect-induced currents.The solution to this problem are the surface plasmon polaritons (SPPs), which are polaritonic states bounded to metal/dielectric interfaces with a substantial overlap of field and metal. Hence SPPs principally allow a strong momentum transfer, giving rise to the plasmon drag effect (PDE). Very promising first results have been achieved, but only few prove-of-effect investigations have been conducted up to date, with the underlying physics remaining undiscovered. This lack of hard data mainly results from the poor electrical conductivity of planar plasmonic films, from suboptimal excitation schemes and from insufficient light/metal interaction lengths.The objectives of the project are to unlock the basic physics of the PDE from an experimental perspective and evaluate its potential for plasmonic optoelectronic detection. The experiments will rely on SPPs propagating on longitudinal metallic nanowires (NWs) inside optical fibers - a novel plasmonic platform solving all above-mentioned problems. The NWs can be several centimeters long with diameters of just several hundreds of nanometers, thus combining an unprecedentedly long light/metal interaction length with a bulk electrical conductivity. The NWs will be electrically connected, allowing to straightforwardly measuring the PDE and analyzing its characteristics under various conditions. Beside direct transmission experiments, the flexible fiber handling will enable investigating the PDE from ambient down to cryogenic temperatures, revealing the influence of phonons and NW-morphology. The fiber also provides the ideal platform for analyzing the dynamic response of the PDE by launching short optical pulses. In terms of application, this project will evaluate, if the PDE can be employed for efficient plasmonic, semiconductor-free optoelectronic detection. This is especially interesting for optical fibers, as the PDE represents a unique way to integrate a high-speed detection scheme into fibers for reaching a fully monolithic in-fiber detector.In summary, this project aims to investigate the PDE on the basis of metallic NWs in optical fibers with two objectives: (i) revealing the underlying physics of the PDE and (ii) evaluating the potential of the PDE in plasmonically optoelectronic detection.
探测不同频率的辐射是任何实际相关的光子系统的关键特征。一种很有前途的探测方案是光子阻力效应,目前正被用于中红外辐射的高速探测。这种效应是通过自由载流子吸收和将光子动量转移到电子,从而产生电流来实现的。由于高载流子浓度和高电导率,金属基本上是利用阻力效应的理想候选者。然而,金属的反射很强,导致电磁波和电子的重叠很少,因此阻力效应引起的电流可以忽略不计。解决这个问题的方法是表面等离子体激元(SPP),它是束缚在金属/电介质界面上的极化子状态,场和金属有很大的重叠。因此,表面等离子体激元主要允许很强的动量转移,从而产生等离子体激元阻力效应。已经取得了非常有希望的初步结果,但到目前为止只进行了很少的效果验证调查,潜在的物理仍未被发现。缺乏硬数据的主要原因是平面等离子体薄膜的导电性差,激发方案不佳,以及光/金属相互作用长度不足。该项目的目标是从实验角度揭示PDE的基本物理,并评估其在等离子体光电探测方面的潜力。实验将依靠SPP在光纤内的纵向金属纳米线(NWS)上传播--一种解决上述问题的新型等离子体平台。原子核可能有几厘米长,直径只有几百纳米,因此将前所未有的长的光/金属相互作用长度与块状导电性结合在一起。NWS将电连接,允许直接测量PDE并分析其在各种条件下的特性。除了直接传输实验,柔性光纤处理将能够研究从常温到低温的偏振子效应,揭示声子和NW形态的影响。该光纤还通过发射短光脉冲为分析PDE的动态响应提供了理想的平台。在应用方面,本项目将评估PDE是否可以用于高效的等离子体、无半导体光电检测。这对于光纤来说尤其令人感兴趣,因为PDE代表了一种将高速检测方案集成到光纤中以达到完全单片光纤内探测器的独特方式。总之,本项目旨在基于光纤中的金属纳米波来研究PDE,目的有两个:(I)揭示PDE的潜在物理机制;(Ii)评估PDE在等离子体光电检测中的潜力。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Resonance‐Induced Dispersion Tuning for Tailoring Nonsolitonic Radiation via Nanofilms in Exposed Core Fibers
  • DOI:
    10.1002/lpor.201900418
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    11
  • 作者:
    Tilman A. K. Lühder;Kay Schaarschmidt;S. Goerke;E. Schartner;H. Ebendorff‐Heidepriem;M. Schmidt
  • 通讯作者:
    Tilman A. K. Lühder;Kay Schaarschmidt;S. Goerke;E. Schartner;H. Ebendorff‐Heidepriem;M. Schmidt
Longitudinally thickness-controlled nanofilms on exposed core fibres enabling spectrally flattened supercontinuum generation
  • DOI:
    10.37188/lam.2021.021
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tilman A. K. Lühder;H. Schneidewind;Erik P. Schartner;Heike Ebendorf-Heidepriem;M. A. Schmidt
  • 通讯作者:
    Tilman A. K. Lühder;H. Schneidewind;Erik P. Schartner;Heike Ebendorf-Heidepriem;M. A. Schmidt
All-Fiber Integrated In-Line Semiconductor Photoconductor
  • DOI:
    10.1109/jlt.2019.2913561
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Tilman A. K. Lühder;J. Plentz;J. Kobelke;K. Wondraczek;M. Schmidt
  • 通讯作者:
    Tilman A. K. Lühder;J. Plentz;J. Kobelke;K. Wondraczek;M. Schmidt
Scalable Functionalization of Optical Fibers Using Atomically Thin Semiconductors
  • DOI:
    10.1002/adma.202003826
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Gia Quyet Ngo;A. George;Robin Tristan Klaus Schock;A. Tuniz;Emad Najafidehaghani;Ziyang Gan;Nils C. Gei
  • 通讯作者:
    Gia Quyet Ngo;A. George;Robin Tristan Klaus Schock;A. Tuniz;Emad Najafidehaghani;Ziyang Gan;Nils C. Gei
Electric current-driven spectral tunability of surface plasmon polaritons in gold coated tapered fibers
  • DOI:
    10.1063/1.5046991
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Tilman A. K. Lühder;T. Wieduwilt;H. Schneidewind;M. Schmidt
  • 通讯作者:
    Tilman A. K. Lühder;T. Wieduwilt;H. Schneidewind;M. Schmidt
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Markus A. Schmidt其他文献

Professor Dr. Markus A. Schmidt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Markus A. Schmidt', 18)}}的其他基金

Dispersion tuning via geometry induced resonances – a novel concept for scaling output powers in coherent supercontinuum generation
通过几何引起的共振进行色散调谐——一种在相干超连续谱产生中缩放输出功率的新颖概念
  • 批准号:
    403520928
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Investigation of mid-IR soliton-based supercontinuum generation in liquid core fibers
液芯光纤中基于中红外孤子的超连续谱产生的研究
  • 批准号:
    404883725
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Localized in-line precipitation of metallic nanostructures in hybrid optical fibers
混合光纤中金属纳米结构的局部在线沉淀
  • 批准号:
    321828008
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
nanowires in fibers - a base for mid-IR all-solid cladding hollow core fibers
光纤中的纳米线 - 中红外全固体包层空心光纤的基础
  • 批准号:
    315131181
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Photonic crystal fibers with disordered claddings - a new path towards improved light guidance in defect cores
具有无序包层的光子晶体光纤——改善缺陷纤芯光导的新途径
  • 批准号:
    278650893
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Understanding noise and coherence properties of supercontinuum generation in non-instantaneous liquid core fibers
了解非瞬时液芯光纤中超连续谱产生的噪声和相干特性
  • 批准号:
    264438699
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Glasgefüllte photonische Kristallfasern - Relaxations- und Erstarrungsverhalten anorganischer Schmelzen in engen Kapillaren
玻璃填充光子晶体光纤——窄毛细管中无机熔体的弛豫和凝固行为
  • 批准号:
    133876737
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Meta-fiber optics - structuring light via 3D nano-printed meta-optics on designer multi-element fibers
元光纤 - 通过设计多元件光纤上的 3D 纳米打印元光学来构造光
  • 批准号:
    470816443
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Higher-order mode manipulation through fiber-interfaced metastructures for nonlinear frequency conversion applications
通过光纤接口元结构进行高阶模式操纵,用于非线性频率转换应用
  • 批准号:
    515003543
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Light cages meet metasurfaces: On-chip twisted light applications enabled by direct laser writing
光笼遇见超表面:通过直接激光写入实现片上扭曲光应用
  • 批准号:
    500262769
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

超稳定Drag-free卫星编队动力学建模与控制研究
  • 批准号:
    11002040
  • 批准年份:
    2010
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Effect of Reynolds number on drag reduction: from near-wall cycle to large-scale motions.
雷诺数对减阻的影响:从近壁循环到大规模运动。
  • 批准号:
    2345157
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Innovative Drag Reduction Technology using 3-D Effect of Gas-Liquid Two-Phase Turbulent Boundary Layers
利用气液两相湍流边界层3D效应的创新减阻技术
  • 批准号:
    21J11854
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
The effect of non-homogeneous roughness on full-scale drag predictions
非均匀粗糙度对全尺寸阻力预测的影响
  • 批准号:
    LP190101134
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Linkage Projects
Study on effect of automatic deflector for drag reduction of road vehicles in cross-wind conditions
自动导流板对道路车辆侧风减阻效果研究
  • 批准号:
    21F21347
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Maximization of frictional drag reduction effect by coarseness and fineness distributed bubbles using multiphase turbulent shear stress meter
使用多相湍流剪切应力计通过粗细分布的气泡最大化摩擦减阻效果
  • 批准号:
    20K04255
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Effect of wave and wind speed fluctuations on drag coefficient
波浪和风速波动对阻力系数的影响
  • 批准号:
    18H01284
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Prediction of Drag Reduction Effect of Hydrogel Painting Having Shear Stress Responsibility by Using Mesoscale Model
利用介观模型预测具有剪切应力作用的水凝胶涂料的减阻效果
  • 批准号:
    17K06963
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Finery Rough Heating Surface Development for Preventing Lowering of Heat Exchanger performance due to the Flow Drag Reduction Effect
开发Finery粗糙加热面以防止因流动减阻效应而导致换热器性能下降
  • 批准号:
    15K05830
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Clarification on Drag-Reduction Effect of 3-Dimensional Riblet with Dual-Plane Stereoscopic PIV
双平面立体PIV阐明3维拉筋减阻效果
  • 批准号:
    24560186
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An investigation on solute drag effect on the kinetics behavior of Austenite to Ferrite transformation in alloying steels
合金钢中奥氏体向铁素体转变动力学行为的溶质拖曳效应研究
  • 批准号:
    408782-2011
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了