Light cages meet metasurfaces: On-chip twisted light applications enabled by direct laser writing

光笼遇见超表面:通过直接激光写入实现片上扭曲光应用

基本信息

项目摘要

Due to its unique properties in terms of physics and applications, twisted (chiral) light with both spin and orbital angular momentum is a highly topical field of research. From a waveguide perspective, twisted optical fibers exhibit fascinating phenomena such as helical Bloch modes or strong circular dichroism. Twisting rates achieved, however, are rather small, only leading to a small perturbative-type influence on mode formation. From the perspective of wavefront shaping, geometric metasurfaces enable control over orbital angular momentum states, yet often suffer from significant cross talk for example in a context of multiplexing.A recently introduced implementation approach for sophisticated photonic structures is 3D nanoprinting using Direct Laser Writing (DLW), offering unique advantages for waveguides and metasurfaces. Here, novel on-chip hollow-core waveguides - so-called light cages - and metasurfaces with access to the additional height degree of freedom have been jointly demonstrated by the applicants.The proposed project targets to explore the generation, guidance and manipulation of light interacting with nanoprinted twisted photonic structures including light cages, chiral metasurfaces and their combination. The project aims to (i) understand the properties of light propagating inside twisted light cages and controlled via chiral metasurfaces, (ii) unlock the potential of DLW to realise twisted functional photonic structures, and (iii) to evaluate whether the combination of chiral metasurfaces and twisted light cages results in a novel photonic platform to reach previously inaccessible physics and applications. To give some examples, DLW principally enables light cages with exceptionally high twist rates and unexplored geometries. For metasurfaces, the height degree of freedom offers full control not only over geometric but also over the propagation phase and therefore the complex amplitude, and via sophisticated shapes also enables intrinsically chiral unit cells. Equally important for our work, DLW allows for direct implementation of metasurface-interfaced twisted light cages in a single fabrication step.Overall, the project will uncover novel physics concerning generation, guidance and manipulation of light interacting with twisted photonic structures. Potential applications that are evaluated within the context of this project will include chiral molecular on-chip sensing, OAM-assisted multiplexing or atomic magnetometry.
由于其在物理和应用方面的独特性质,具有自旋和轨道角动量的扭曲(手性)光是一个非常热门的研究领域。从波导的角度来看,扭曲光纤表现出迷人的现象,如螺旋布洛赫模式或强圆二色性。然而,实现的扭转率是相当小的,只导致一个小的扰动型模式形成的影响。从波前成形的角度来看,几何元表面能够控制轨道角动量状态,但通常会遭受严重的串扰,例如在多路复用的背景下。最近推出的复杂光子结构的实现方法是使用直接激光写入(DLW)的3D纳米打印,为波导和元表面提供独特的优势。在这里,新的芯片上空芯波导-所谓的光笼-和超颖表面与访问额外的高度自由度已经由申请人共同展示。拟议的项目的目标是探索光的产生,引导和操纵与纳米印刷扭曲光子结构,包括光笼,手性超颖表面及其组合相互作用。该项目旨在(i)了解光在扭曲光笼内传播并通过手性超颖表面控制的特性,(ii)解锁DLW实现扭曲功能光子结构的潜力,以及(iii)评估手性超颖表面和扭曲光笼的组合是否会产生一种新的光子平台,以达到以前无法实现的物理和应用。举例来说,DLW主要实现具有极高扭曲率和未探索几何形状的轻质笼。对于超颖表面,高度自由度不仅提供了对几何形状的完全控制,而且还提供了对传播相位的完全控制,因此还提供了对复振幅的完全控制,并且通过复杂的形状还实现了固有的手性晶胞。对于我们的工作同样重要的是,DLW允许在单个制造步骤中直接实现超表面接口的扭曲光笼。总的来说,该项目将揭示关于光与扭曲光子结构相互作用的产生,引导和操纵的新物理。在本项目范围内评估的潜在应用将包括手性分子芯片传感、OAM辅助多路复用或原子磁力测定。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Markus A. Schmidt其他文献

Professor Dr. Markus A. Schmidt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Markus A. Schmidt', 18)}}的其他基金

Dispersion tuning via geometry induced resonances – a novel concept for scaling output powers in coherent supercontinuum generation
通过几何引起的共振进行色散调谐——一种在相干超连续谱产生中缩放输出功率的新颖概念
  • 批准号:
    403520928
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Investigation of mid-IR soliton-based supercontinuum generation in liquid core fibers
液芯光纤中基于中红外孤子的超连续谱产生的研究
  • 批准号:
    404883725
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Plasmon Drag Effect enabled by Metallic Nanowires inside Optical Fibers: fundamentals and optoelectronic aspects
光纤内金属纳米线实现的等离子阻力效应:基础知识和光电方面
  • 批准号:
    318570041
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Localized in-line precipitation of metallic nanostructures in hybrid optical fibers
混合光纤中金属纳米结构的局部在线沉淀
  • 批准号:
    321828008
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
nanowires in fibers - a base for mid-IR all-solid cladding hollow core fibers
光纤中的纳米线 - 中红外全固体包层空心光纤的基础
  • 批准号:
    315131181
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Photonic crystal fibers with disordered claddings - a new path towards improved light guidance in defect cores
具有无序包层的光子晶体光纤——改善缺陷纤芯光导的新途径
  • 批准号:
    278650893
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Understanding noise and coherence properties of supercontinuum generation in non-instantaneous liquid core fibers
了解非瞬时液芯光纤中超连续谱产生的噪声和相干特性
  • 批准号:
    264438699
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Glasgefüllte photonische Kristallfasern - Relaxations- und Erstarrungsverhalten anorganischer Schmelzen in engen Kapillaren
玻璃填充光子晶体光纤——窄毛细管中无机熔体的弛豫和凝固行为
  • 批准号:
    133876737
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Meta-fiber optics - structuring light via 3D nano-printed meta-optics on designer multi-element fibers
元光纤 - 通过设计多元件光纤上的 3D 纳米打印元光学来构造光
  • 批准号:
    470816443
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Higher-order mode manipulation through fiber-interfaced metastructures for nonlinear frequency conversion applications
通过光纤接口元结构进行高阶模式操纵,用于非线性频率转换应用
  • 批准号:
    515003543
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Collaborative Research: Room-temperature Superfluorescence in Multi-fluorophore Protein Cages and Its Origins
合作研究:多荧光团蛋白笼中的室温超荧光及其起源
  • 批准号:
    2232718
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Room-temperature Superfluorescence in Multi-fluorophore Protein Cages and Its Origins
合作研究:多荧光团蛋白笼中的室温超荧光及其起源
  • 批准号:
    2232717
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Self-assembled supramolecular cages for guest binding and catalysis
用于客体结合和催化的自组装超分子笼
  • 批准号:
    DP230100190
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Pillararene-Basket Conjugates, Deeper Cavity Baskets and Covalent Basket Cages for Allosteric Complexation of Toxicants
用于毒物变构络合的柱芳烃篮缀合物、深腔篮和共价篮笼
  • 批准号:
    2304883
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Fused Filament Fabrication of Porous PEEK and PEKK Spinal Cages: Which 3D Printing Conditions Control Static and Fatigue Strength?
多孔 PEEK 和 PEKK 脊柱笼的熔丝制造:哪种 3D 打印条件可以控制静电强度和疲劳强度?
  • 批准号:
    2326537
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Vivarium Modernization with Digital Ventilated Cages to Enhance Research Capacity and Reproducibility, and Provide Cage Environment Monitoring for Improved Operational Efficiency and Animal Welfare
采用数字通风笼进行现代化改造,以提高研究能力和再现性,并提供笼环境监测,以提高运营效率和动物福利
  • 批准号:
    10533591
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Synthesis of metal oxide nanoparticles with controlled shape and size utilizing organic molecular cages
利用有机分子笼合成形状和尺寸受控的金属氧化物纳米颗粒
  • 批准号:
    22K14690
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Cages intervertébrales imprimées en 3D: validation expérimentale d'un modèle numérique
3D 间的笼子:验证实验
  • 批准号:
    572115-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Cages, Corrals and Vesicular Trafficking Shape the Diffusional Environment of the Plasma Membrane.
笼子、畜栏和囊泡运输塑造了质膜的扩散环境。
  • 批准号:
    RGPIN-2022-03515
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Trapping Electrons in PN Cages
将电子捕获在 PN 笼中
  • 批准号:
    572299-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了