A stable, efficient and accurate high-order discretization for low Mach flows
稳定、高效、准确的低马赫流高阶离散化
基本信息
- 批准号:318864836
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We propose, further develop, and analyze a particularly efficient method to compute singularly perturbed problems such as the compressible Navier-Stokes equations at low Mach number. A key contribution is a new splitting of the flux into fast and slow components, which is based on a suitable reference solution (RS). This is combined with the well-known implicit-explicit (IMEX) paradigm. We call the resulting scheme RS-IMEX. Recent studies of low order finite volume schemes for prototype hyperbolic systems, and high order IMEX Runge-Kutta and IMEX BDF schemes for stiff ODEs have shown increased accuracy.In this project, we generalize the RS-IMEX approach to high order IMEX discontinuous Galerkin methods. In order to build an efficient solver, we need to re-develop several essential ingredients in such a way that they are tailored to the RS-IMEX context: preconditioners based on the reference solution, linear solvers adapted to the extreme stiffness, hybrid IMEX DG discretizations reducing the dimension of the implicit problem, and an efficient coupling of compressible and incompressible solvers, the latter one being particularly important to efficiently employ the reference solution. Throughout the development we analyze the asymptotic consistency and stability of each new component, and compare the resulting methods to recent state of the art IMEX schemes.Our goal is to establish the DG-based RS-IMEX scheme as a general, systematic, particularly accurate, stable and efficient method for asymptotically stiff problems.
我们提出,进一步发展,并分析了一种特别有效的方法来计算奇摄动问题,如低马赫数下的可压缩Navier-Stokes方程。一个关键的贡献是基于合适的参考解决方案(RS)将通量划分为快速和慢速组分。这与众所周知的隐式显式(IMEX)范式相结合。我们将生成的方案称为RS-IMEX。最近对双曲原型系统的低阶有限体积格式和刚性ode的高阶IMEX Runge-Kutta和IMEX BDF格式的研究表明,精度有所提高。在这个项目中,我们将RS-IMEX方法推广到高阶IMEX不连续Galerkin方法。为了构建一个高效的求解器,我们需要重新开发几个基本成分,以使它们适合RS-IMEX环境:基于参考解的预调节器,适应极端刚度的线性求解器,混合IMEX DG离散化,减少隐式问题的维度,以及可压缩和不可压缩求解器的有效耦合,后者对于有效地使用参考解尤为重要。在整个开发过程中,我们分析了每个新分量的渐近一致性和稳定性,并将所得方法与最新的最先进的IMEX方案进行了比较。我们的目标是建立基于dg的RS-IMEX格式,使其成为求解渐近刚性问题的一种通用的、系统的、特别精确的、稳定的和有效的方法。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Influence of the Asymptotic Regime on the RS-IMEX
渐近状态对 RS-IMEX 的影响
- DOI:10.1007/978-3-319-63082-3_7
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Klaus Kaiser;Jochen Schütz
- 通讯作者:Jochen Schütz
A Novel Full-Euler Low Mach Number IMEX Splitting
- DOI:10.4208/cicp.oa-2018-0270
- 发表时间:2020-06
- 期刊:
- 影响因子:3.7
- 作者:J. Zeifang;J. Schütz;K. Kaiser;A. Beck;M. Lukáčová-Medvid’ová;S. Noelle
- 通讯作者:J. Zeifang;J. Schütz;K. Kaiser;A. Beck;M. Lukáčová-Medvid’ová;S. Noelle
Efficient high-order discontinuous Galerkin computations of low Mach number flows
- DOI:10.2140/camcos.2018.13.243
- 发表时间:2018-09
- 期刊:
- 影响因子:2.1
- 作者:J. Zeifang;K. Kaiser;A. Beck;J. Schütz;C. Munz
- 通讯作者:J. Zeifang;K. Kaiser;A. Beck;J. Schütz;C. Munz
Asymptotic error analysis of an IMEX Runge-Kutta method
IMEX Runge-Kutta 方法的渐近误差分析
- DOI:10.1016/j.cam.2018.04.044
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:K. Kaiser;J. Schütz
- 通讯作者:J. Schütz
A High-Order Method for Weakly Compressible Flows
- DOI:10.4208/cicp.oa-2017-0028
- 发表时间:2017-10
- 期刊:
- 影响因子:3.7
- 作者:K. Kaiser;J. Schütz
- 通讯作者:K. Kaiser;J. Schütz
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Sebastian Noelle其他文献
Professor Dr. Sebastian Noelle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Sebastian Noelle', 18)}}的其他基金
Development of a genuinely multidimensional, parallel finite volume method for 3D magnetohydrodynamics with application to astrophysical flows. Visualization of large, distributed data sets.
开发真正的多维、并行有限体积方法,用于 3D 磁流体动力学并应用于天体物理流。
- 批准号:
5309416 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Priority Programmes
Entwicklung eines echt mehrdimensionalen, parallelen Finiten Volumenverfahrens für die MHD-Gleichungen in 3D mit Anwendungen auf die Astrophysik - Visualisierung großer, verteilter Datensätze
开发真正的多维、并行有限体积方法,用于 3D 中的 MHD 方程并应用于天体物理学 - 大型分布式数据集的可视化
- 批准号:
5309422 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
固定参数可解算法在平面图问题的应用以及和整数线性规划的关系
- 批准号:60973026
- 批准年份:2009
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
Adapting Position-Based Dynamics as a Biophysically Accurate and Efficient Modeling Framework for Dynamic Cell Shapes
采用基于位置的动力学作为动态细胞形状的生物物理准确且高效的建模框架
- 批准号:
24K16962 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: A Theoretical Exploration of Efficient and Accurate Clustering Algorithms
职业生涯:高效准确聚类算法的理论探索
- 批准号:
2337832 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Efficient and accurate scaling Graph Neural Networks for giant graphs
针对巨型图的高效、准确的缩放图神经网络
- 批准号:
24K20787 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
- 批准号:
2309547 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
A next-generation extendable simulation environment for affordable, accurate, and efficient free energy simulations
下一代可扩展模拟环境,可实现经济、准确且高效的自由能源模拟
- 批准号:
10638121 - 财政年份:2023
- 资助金额:
-- - 项目类别:
SBIR Phase I: A hybrid phasor/waveform simulation tool for the accurate and efficient simulation of large electric power systems with high shares of inverter-based resources
SBIR 第一阶段:一种混合相量/波形仿真工具,用于精确高效地仿真具有高份额逆变器资源的大型电力系统
- 批准号:
2321329 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CDS&E: ECCS: Accurate and Efficient Uncertainty Quantification and Reliability Assessment for Computational Electromagnetics and Engineering
CDS
- 批准号:
2305106 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
- 批准号:
2309548 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Improving patient safety and hospital hygiene through the efficient and accurate identification of patients with antimicrobial resistant organisms (AROs) using clinical support tools in electronic medical records
使用电子病历中的临床支持工具高效、准确地识别抗菌药物耐药微生物 (ARO) 患者,提高患者安全和医院卫生
- 批准号:
478042 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
Developing New Statistical Methods for Vector-Borne Disease Surveillance to Improve Accuracy while Reducing Cost
开发新的媒介传播疾病监测统计方法,以提高准确性并降低成本
- 批准号:
10774013 - 财政年份:2023
- 资助金额:
-- - 项目类别:














{{item.name}}会员




