Geometric properties in Orlicz spaces, direct sums and Banach spaces of vector-valued functions
向量值函数的 Orlicz 空间、直和和 Banach 空间中的几何性质
基本信息
- 批准号:320383220
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Since James Clarkson introduced the notion of uniform convexity in 1936, the study of convexity and smoothness properties of Banach spaces forms an important subfield of functional analysis. Such properties are interesting both from a theoretical and a more applied point of view.A principal question of Banach space theory concerns the stability of these geometric properties with respect to typical constructions of functional analysis, which include in particular direct sums and spaces of vector-valued functions such as Orlicz-Bochner spaces or the more general Köthe-Bochner spaces.There exists already a wide literature on classical convexity and smoothness properties of such spaces. In my dissertation, I have conducted extensive studies on some generalised notions of convexity and smoothness (the so called acs properties) in direct sums and Köthe-Bochner spaces.A far more wide-reaching generalisation of both the concepts of direct sums and Köthe-Bochner spaces are the so called direct integrals of Banach spaces, which were introduced in 1991 by Haydon, Levy and Raynaud for the study of representations of so called random Banach spaces. So far, the geometry of these direct integrals has not been studied systematically.It is therefore the main aim of this project to conduct comprehensive research on convexity and smoothness properties of direct integrals. This requires also an explicit description of the dual space of a direct integral, which is of independent interest. Such a description is not known until now and thus it has to be developed within this project, building on the known duality theory for Köthe-Bochner spaces.It is planned to study classical properties (e. g. strict or uniform convexity, Gateaux- or Frechet-differentiability of the norm) as well as the above-mentioned acs properties and several other generalised notions of convexity in direct integrals. New results especially on the geometry of infinte direct sums and Orlicz-/Köthe-Bochner spaces are also expected.
自从1936年James克拉克森引入一致凸性的概念以来,Banach空间的凸性和光滑性的研究成为泛函分析的一个重要分支。从理论和应用的角度来看,这些性质都是有趣的。Banach空间理论的一个主要问题涉及这些几何性质相对于泛函分析的典型构造的稳定性,其中包括特别是直接和空间的向量值的功能,如Orlicz-Bochner空间或更一般的Köthe-已经有大量的文献讨论了这种空间的经典凸性和光滑性。在我的论文中,我对凸性和光滑性的一些概括概念进行了广泛的研究(所谓的acs性质)。直接和Köthe-Bochner空间的概念的更广泛的推广是所谓的Banach空间的直接积分,它是由Haydon在1991年引入的,Levy和Raynaud研究了所谓的随机Banach空间的表示。到目前为止,这些直接积分的几何还没有系统的研究,因此,本项目的主要目的是对直接积分的凸性和光滑性进行全面的研究。这也需要一个明确的描述的对偶空间的直接积分,这是独立的利益。这种描述直到现在还不为人所知,因此它必须在这个项目中发展,建立在已知的Köthe-Bochner空间的对偶理论上。G.严格或一致凸性,规范的Gateaux-或Frechet-可微性)以及上述acs性质和直接积分中凸性的其他几个广义概念。新的结果,特别是几何的无穷直和和Orlicz/Köthe-Bochner空间也有望。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Jan-David Hardtke其他文献
Dr. Jan-David Hardtke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
- 批准号:12375280
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
聚合铁-腐殖酸混凝沉淀-絮凝调质过程中絮体污泥微界面特性和群体流变学的研究
- 批准号:20977008
- 批准年份:2009
- 资助金额:34.0 万元
- 项目类别:面上项目
层状钴基氧化物热电材料的组织取向度与其性能关联规律研究
- 批准号:50702003
- 批准年份:2007
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A Novel Surrogate Framework for evaluating THM Properties of Bentonite
评估膨润土 THM 性能的新型替代框架
- 批准号:
DP240102053 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Training Grant
Collaborative Research: Compositionally and Structurally Modulated Ferroelastic Films for Unprecedented Superelastic Properties
合作研究:成分和结构调制的铁弹性薄膜,具有前所未有的超弹性特性
- 批准号:
2333551 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Polynomial Interpolation, Symmetric Ideals, and Lefschetz Properties
多项式插值、对称理想和 Lefschetz 属性
- 批准号:
2401482 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Electronic, transport and topological properties of frustrated magnets
受挫磁体的电子、输运和拓扑特性
- 批准号:
2403804 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
RUI: Investigating the Covalency of Intermolecular Interactions and its Effect on the Properties of Supramolecular Complexes.
RUI:研究分子间相互作用的共价性及其对超分子复合物性质的影响。
- 批准号:
2404011 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341238 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Characterization of the distribution and properties of inert copper in seawater
海水中惰性铜的分布和性质表征
- 批准号:
2343416 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
- 批准号:
2347294 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Exploring the contribution of cell wall components and osmotic pressure to mechanical properties that enable root growth
探索细胞壁成分和渗透压对促进根系生长的机械性能的贡献
- 批准号:
24K17868 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists