Profiling Toolkit for High Performance Computing

高性能计算分析工具包

基本信息

项目摘要

High-Performance-Computing (HPC) has become a standard research tool in many scientific disciplines. In the natural and engineering sciences research without at least supporting HPC calculations is becoming increasingly rare. On top of that new disciplines are discovering HPC as an asset to their research, for example in the areas of bioinformatics and social sciences. This means that more and more scientists start using HPC resources, without having a good understanding of the working of such systems. On the other hand, the complexity of HPC resources increases, thereby increasing this knowledge gap. This especially pertains to the performance parameters of HPC jobs and the importance of performance engineering. Scientists with beginning or intermediate HPC knowledge levels are often content once their research problem can be solved on an available system in an acceptable time frame, even if that means compromising on accuracy or the amount of questions addressed. The situation is exacerbated by the fact that these users mostly use their local Tier-3 compute center, which typically lacks sufficient human resources to work with them individually on application performance. We also need to concede that, at least in the beginning of their scientific research, most users do not concern themselves with optimal use of system resources or application performance, as, understandably, their primary objective is to generate scientific output as fast as possible. This also leads to a lock-in where researchers will be unable to transfer their work to Tier-2 or Tier-1 compute resources, even if that would be required, simply because they are not able to scale their calculations sufficiently. With the deployment of heterogeneous, and more complex systems at Tier-3 centers the need of awareness for performance aspects is seen as a challenge for the optimal use of compute and storage resources on Tier-3 and Tier-2 resources, as outlined by the call. We aim to raising awareness for performance parameters and issues across all HPC user communities and to enable HPC users at all levels of experience to obtain and understand information on the perfor-mance of their workloads. The resulting information are then suitable for further investigation and performance engineering measures,thereby also lowering barriers to Tier-2 and Tier-1 resources due to insufficient scaling. In order to achieve these goals we propose to implement a profiling tool set, based on existing profiling solutions, which automatically collects per job performance metrics and presents them to researchers in an understandable summary.
高性能计算(HPC)已经成为许多科学学科的标准研究工具。在自然科学和工程科学研究中,不支持HPC计算的研究越来越少。最重要的是,新学科正在发现HPC作为其研究的资产,例如在生物信息学和社会科学领域。这意味着越来越多的科学家开始使用HPC资源,而对这些系统的工作没有很好的了解。另一方面,HPC资源的复杂性增加,从而增加了这种知识差距。这特别涉及到HPC作业的性能参数和性能工程的重要性。具有初级或中级HPC知识水平的科学家通常会在他们的研究问题可以在可接受的时间范围内在可用的系统上解决时感到满意,即使这意味着要牺牲准确性或解决的问题数量。这些用户大多使用本地的第3层计算中心,而这些计算中心通常缺乏足够的人力资源来与他们单独合作提高应用程序性能,这一事实加剧了这种情况。我们还需要承认,至少在科学研究的开始阶段,大多数用户并不关心系统资源的最佳利用或应用程序的性能,因为可以理解,他们的主要目标是尽快产生科学成果。这也导致了研究人员无法将他们的工作转移到Tier-2或Tier-1计算资源的锁定,即使这是必需的,仅仅是因为他们无法充分扩展他们的计算。随着在第3层中心部署异构和更复杂的系统,对性能方面的认知需求被视为在第3层和第2层资源上优化使用计算和存储资源的挑战,如电话会议所述。我们的目标是提高所有HPC用户社区对性能参数和问题的认识,并使所有经验级别的HPC用户能够获得和了解有关其工作负载性能的信息。然后,所得到的信息适合于进一步的调查和性能工程措施,从而也降低了由于扩展不足而导致的第2层和第1层资源的障碍。为了实现这些目标,我们建议实现一个分析工具集,基于现有的分析解决方案,自动收集每一个工作的性能指标,并将它们呈现给研究人员在一个可以理解的摘要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Nikolai Kornev其他文献

Professor Dr.-Ing. Nikolai Kornev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Nikolai Kornev', 18)}}的其他基金

Mechanisms of particle fouling on structured heat exchanger surfaces
结构化换热器表面颗粒结垢的机制
  • 批准号:
    268877694
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Development and validation of a novel structure based method for artificial generation of inlet condition for LES
一种基于结构的新型方法的开发和验证,用于人工生成 LES 入口条件
  • 批准号:
    247466387
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Einfluss von nichtlinearen und instationären aerodynamischen Effekten auf die Stabilität von Flügelanordnungen in Bodennähe
非线性和非定常气动效应对机翼组件近地稳定性的影响
  • 批准号:
    203077693
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

SCC-PG WECAN Smart Toolkit: Wellbeing Enhancement through Crowd-sourced Assessment of Neighborhood-infrastructure
SCC-PG WECAN 智能工具包:通过社区基础设施众包评估增强福祉
  • 批准号:
    2332339
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Smart Cues Toolkit: Supporting Physical Activity at Home with Interactive Contextual Cues
智能提示工具包:通过交互式上下文提示支持家庭体育活动
  • 批准号:
    EP/X036766/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
A genomic toolkit to future-proof the seaweed industry
面向未来的海藻行业的基因组工具包
  • 批准号:
    IE230100464
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Early Career Industry Fellowships
Generative AI toolkit to enforce regulatory requirements and enable capacity for increased corporate transparency.
生成式人工智能工具包,用于执行监管要求并提高企业透明度。
  • 批准号:
    10098889
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Building an epidemiological modelling toolkit for epidemic preparedness
构建流行病学建模工具包以做好流行病防范
  • 批准号:
    MR/Z503939/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
An enhanced toolkit for Botrytis control in protected cropping
保护性种植中灰霉病控制的增强工具包
  • 批准号:
    BB/Z514755/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
IP23-006 VIMP: A Discourse-Aware, Community-Informed Toolkit to Predict Virality and Impact of Vaccine Misinformation Contents
IP23-006 VIMP:一个具有话语感知、社区知情的工具包,用于预测疫苗错误信息内容的病毒性和影响
  • 批准号:
    10762193
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
Multipurpose Electronics Toolkit using Suspended Membranes: towards Systems on Nothing
使用悬浮膜的多用途电子工具包:走向无源系统
  • 批准号:
    EP/Y000196/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
400 Million Years of Food Transport in Plants: unearthing the origin, diversity and genetic toolkit of vasculature
植物中 4 亿年的食物运输:挖掘脉管系统的起源、多样性和遗传工具包
  • 批准号:
    MR/Y03399X/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
MISTRAL a toolkit for dynaMic health Impact analysiS to predicT disability-Related costs in the Aging population based on three case studies of steeL-industry exposed areas in Europe
MISTRAL 动态健康影响分析工具包,基于欧洲钢铁行业暴露地区的三个案例研究,预测老龄化人口中与残疾相关的成本
  • 批准号:
    10063764
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了