Building an epidemiological modelling toolkit for epidemic preparedness

构建流行病学建模工具包以做好流行病防范

基本信息

  • 批准号:
    MR/Z503939/1
  • 负责人:
  • 金额:
    $ 67.29万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

This proposal aims to change how we predict and manage infectious diseases through the application of advanced mathematical methods to the development and analysis of models of infectious disease transmission. Recognizing limitations in current models exposed by the COVID-19 pandemic, such as delayed response times and challenges in adapting models to a new disease, this project proposes a novel approach. It centres on creating a flexible, transparent toolkit for building transmission models that can rapidly adapt to new information, enabling real-time decision-making during health crises.The methodology combines applied category theory (ACT) with operational modeling to simplify the construction and adaptation of complex disease models. ACT is a mathematical framework to describe complex systems in a structured and relational way, like a language for understanding how different parts of a system can fit together and interact, making it particularly useful for building and analyzing models in various fields, including epidemiology. By decomposing models into reusable components, the project intends to make the process of modeling more accessible and adaptable, fostering an environment where models can be quickly tailored to specific diseases or scenarios. Moreover, the research addresses the integration of these models with decision-making processes, acknowledging the uncertainty inherent in predicting disease spread and the effectiveness of interventions. It explores optimizing decisions under this uncertainty, aiming to provide robust support for public health strategies.Applications of this research will be demonstrated through models of measles and SARS-CoV-2, the virus that causes COVID-19, showcasing the toolkit's ability to replicate existing models and create new ones that can inform policy decisions. These demonstrations will benefit from a large and detailed dataset on the transmission dynamics of these infections, and will be run in a trusted research environment, where detailed epidemiological information can be used in the models in a safe, secure manner. Through workshops and open-source distribution of the underlying software, the project seeks to empower modelers, policymakers, and researchers, enhancing preparedness for future pandemics. This initiative not only advances the field of epidemiological modeling but also contributes to a more informed and flexible response to public health threats, potentially saving lives and resources by enabling swift, evidence-based action.
本提案旨在通过将先进的数学方法应用于传染病传播模型的开发和分析,改变我们预测和管理传染病的方式。认识到COVID-19大流行暴露出的现有模型的局限性,例如响应时间延迟和使模型适应新疾病的挑战,本项目提出了一种新的方法。它的重点是创建一个灵活、透明的工具包,用于建立能够迅速适应新信息的传播模型,从而在卫生危机期间实现实时决策。该方法将应用范畴理论(ACT)与操作建模相结合,简化了复杂疾病模型的构建和适应。ACT是一个数学框架,以结构化和关系的方式描述复杂系统,就像一种语言,用于理解系统的不同部分如何组合在一起和相互作用,使其在包括流行病学在内的各个领域建立和分析模型特别有用。通过将模型分解为可重用的组件,该项目打算使建模过程更易于访问和适应,培养一种环境,在这种环境中,模型可以快速地针对特定的疾病或场景进行定制。此外,该研究解决了这些模型与决策过程的整合,承认预测疾病传播和干预措施有效性的固有不确定性。它探索在这种不确定性下优化决策,旨在为公共卫生战略提供强有力的支持。这项研究的应用将通过麻疹和SARS-CoV-2(导致COVID-19的病毒)模型来展示,展示该工具包复制现有模型并创建可以为政策决策提供信息的新模型的能力。这些演示将受益于关于这些感染传播动态的庞大而详细的数据集,并将在可信的研究环境中进行,在该环境中,详细的流行病学信息可以以安全可靠的方式用于模型。通过讲习班和基础软件的开源分发,该项目力求增强建模者、政策制定者和研究人员的能力,加强对未来大流行病的防范。这一举措不仅推动了流行病学建模领域的发展,而且有助于对公共卫生威胁作出更知情和更灵活的反应,有可能通过采取迅速的循证行动来挽救生命和资源。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Simon Frost其他文献

Bespoke bookselling for the twenty-first century: John Smith’s and current UK higher education
二十一世纪的定制图书销售:约翰·史密斯的和当前的英国高等教育
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Simon Frost
  • 通讯作者:
    Simon Frost
Formal Specification and Verification of Architecturally-Defined Attestation Mechanisms in Arm CCA and Intel TDX
Arm CCA 和 Intel TDX 中架构定义的证明机制的正式规范和验证
  • DOI:
    10.1109/access.2023.3346501
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Muhammad Usama Sardar;Thomas Fossati;Simon Frost;Shale Xiong
  • 通讯作者:
    Shale Xiong
Mapping antigenic variation in HIV-1 envelope
  • DOI:
    10.1186/1742-4690-10-s1-p32
  • 发表时间:
    2013-09-19
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Simon Frost
  • 通讯作者:
    Simon Frost

Simon Frost的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Simon Frost', 18)}}的其他基金

Transmission dynamics and molecular epidemiology of arboviruses in Indonesia
印度尼西亚虫媒病毒的传播动力学和分子流行病学
  • 批准号:
    MR/P017541/1
  • 财政年份:
    2017
  • 资助金额:
    $ 67.29万
  • 项目类别:
    Research Grant
Combining epidemiological and phylogenetic models of infectious disease dynamics
结合传染病动力学的流行病学和系统发育模型
  • 批准号:
    MR/J013862/1
  • 财政年份:
    2013
  • 资助金额:
    $ 67.29万
  • 项目类别:
    Research Grant

相似国自然基金

眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
  • 批准号:
    82371110
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目

相似海外基金

Epidemiological modelling of behavioural impact on Mpox mitigation strategies
行为对 Mpox 缓解策略影响的流行病学模型
  • 批准号:
    481271
  • 财政年份:
    2023
  • 资助金额:
    $ 67.29万
  • 项目类别:
    Operating Grants
Modelling, predicting and risk assessment of mpox (monkeypox) and other (re)emerging zoonotic threats to inform decision-making and public health actions: mathematical, geospatial and machine learning approaches
对mpox(猴痘)和其他(重新)出现的人畜共患威胁进行建模、预测和风险评估,为决策和公共卫生行动提供信息:数学、地理空间和机器学习方法
  • 批准号:
    481139
  • 财政年份:
    2023
  • 资助金额:
    $ 67.29万
  • 项目类别:
    Operating Grants
Developing better modelling inference tools to inform disease control for bovine Tuberculosis using epidemiological and pathogen genetic information.
开发更好的建模推理工具,利用流行病学和病原体遗传信息为牛结核病的疾病控制提供信息。
  • 批准号:
    BB/W007290/1
  • 财政年份:
    2022
  • 资助金额:
    $ 67.29万
  • 项目类别:
    Research Grant
Mechanistic modelling of colorectal carcinogenesis based on epidemiological data and an investigation of its validity
基于流行病学数据的结直肠癌发生机制模型及其有效性研究
  • 批准号:
    22K11951
  • 财政年份:
    2022
  • 资助金额:
    $ 67.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developing better modelling inference tools to inform disease control for bovine Tuberculosis using epidemiological and pathogen genetic information.
开发更好的建模推理工具,利用流行病学和病原体遗传信息为牛结核病的疾病控制提供信息。
  • 批准号:
    BB/W007711/1
  • 财政年份:
    2022
  • 资助金额:
    $ 67.29万
  • 项目类别:
    Research Grant
Spatial and epidemiological modelling for wildlife and agricultural health
野生动物和农业健康的空间和流行病学模型
  • 批准号:
    2737820
  • 财政年份:
    2022
  • 资助金额:
    $ 67.29万
  • 项目类别:
    Studentship
Real-time epidemiological intelligence to inform control of SARS-CoV-2: improving the precision, validity, and granularity of estimates of the effective reproduction number in Canada
实时流行病学情报为 SARS-CoV-2 的控制提供信息:提高加拿大有效传染数估计的精确度、有效性和粒度
  • 批准号:
    458825
  • 财政年份:
    2021
  • 资助金额:
    $ 67.29万
  • 项目类别:
    Studentship Programs
The CAnadian Mother-ChIld COLlaborative Training Platform - The CAMCCO-L Training Platform
加加拿大母子协作培训平台 - CAMCCO-L 培训平台
  • 批准号:
    458399
  • 财政年份:
    2021
  • 资助金额:
    $ 67.29万
  • 项目类别:
    Operating Grants
Addressing the single-risk single-disease framework through deep learning and agent-based modelling: applications in multimorbidity
通过深度学习和基于代理的建模解决单一风险单一疾病框架:在多发病中的应用
  • 批准号:
    458247
  • 财政年份:
    2021
  • 资助金额:
    $ 67.29万
  • 项目类别:
    Studentship Programs
Epidemiological risk model to inform targeted prevention strategies in endometrial cancer
流行病学风险模型为子宫内膜癌的针对性预防策略提供信息
  • 批准号:
    466604
  • 财政年份:
    2021
  • 资助金额:
    $ 67.29万
  • 项目类别:
    Studentship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了