Multipurpose Electronics Toolkit using Suspended Membranes: towards Systems on Nothing

使用悬浮膜的多用途电子工具包:走向无源系统

基本信息

  • 批准号:
    EP/Y000196/1
  • 负责人:
  • 金额:
    $ 106.53万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Concerted progress in energy sources, sensing, and communications are bringing closer a future in which connected smart sensors will contribute to improved health and sustainable use of resources via environmental, personal health, and process monitoring. For maximum value, data should be generated and processed through means that are reliable, but also cost effective, energy efficient, and ecologically sound. By doing the initial conditioning and processing of incoming data close to the sensor (i.e. at the edge of a sensing network), energy savings and signal integrity can be improved, at the expense of local complexity. The electronic devices performing signal conditioning, data conversion, and decision in such systems are typically realised in state-of-the art and exorbitantly expensive chip manufacturing facilities (fabs). Recent pressure on the chip supply chain has increased the appeal of exploring alternative technologies. Chief among these are thin-film processes in which electronic devices and sensing components can be manufactured at a fraction of the cost, but simultaneously with: a major drop in performance; challenges in manufacturing circuits of the required complexity; and in many cases, much higher energy requirements during operation. At Surrey, we have devised and are developing a design philosophy and associated thin-film electronic device called the source-gated transistor (SGT), with superior power efficiency, stability, and amplification compared to conventional thin-film transistors, advantages which come at the cost of further reducing the operating speed. Our recent observation shows that the best SGT performance arises when combining thin semiconductor materials of high electrical permittivity with low-permittivity dielectrics, in a design that is counterintuitive to traditional approaches but is consistent with first principles. In this project, we will demonstrate SGTs and circuits, with hitherto inaccessible levels of performance and energy efficiency, by combining the advantages of the device architecture with the material properties of suspended crystalline silicon and germanium membranes. The charge carrier mobility of these materials, vastly superior to the usual thin films, and the geometrical scaling afforded by the exceptional SGT functional features, will enable circuits that are >100x faster and >10x more energy efficient than previous SGT-based designs. By expressly merging thin-film and "traditional silicon"-based approaches, these devices will serve as unique building blocks for highly efficient wearable, point-of-care, and distributed sensing systems with built-in sensing, signal conditioning, and decision. Even as we will be using materials aligned with traditional chips, our approach will not rely on the costly state-of-the art fabrication facilities, relieving much needed manufacturing capacity for complex chips e.g. processors and AI accelerators, while delivering transformative functionality to an emerging sensor ecosystem.In this initial project, the route to manufacturing will be explored, but as a secondary concern. We will focus primarily on the demonstration of a ground-breaking concept, through innovative joining of previously disparate materials and fabrication philosophies. In a high-risk, high-reward approach, we will confirm transistor operation, not only as amplifiers and signal conditioning stages, but potentially as sensors for bio-, chemical and mechanical stimuli. We will establish design rules and guidelines, supported by numerical simulation and by material and device characterisation. Thus, these advances will holistically represent a toolkit for the implementation of highly versatile, multipurpose sensing and processing systems towards a connected future beyond the Internet-of-Things. As a catalyst for prolific academic and industrial advances, the research will contribute firmly to maintaining the UK's leadership in emerging electronic technologies.
能源、传感和通信领域的协同进步正使互联智能传感器通过环境、个人健康和过程监测为改善健康和可持续利用资源做出贡献的未来更加接近。为了获得最大的价值,数据的生成和处理应该是可靠的,但也要具有成本效益、能源效率和生态无害的手段。通过对靠近传感器(即在传感网络的边缘)的传入数据进行初始调节和处理,可以以牺牲局部复杂性为代价,节省能源和提高信号完整性。在这样的系统中,执行信号调节、数据转换和决策的电子设备通常在最先进和极其昂贵的芯片制造设施(晶圆厂)中实现。最近芯片供应链面临的压力增加了探索替代技术的吸引力。其中最主要的是薄膜工艺,在这种工艺中,电子设备和传感元件可以以很小的成本制造,但同时:性能大幅下降;制造所需复杂电路的挑战;在很多情况下,在运行过程中需要更高的能量。在萨里,我们已经设计并正在开发一种设计理念和相关的薄膜电子器件,称为源门控晶体管(SGT),与传统的薄膜晶体管相比,它具有更高的功率效率、稳定性和放大能力,这些优势是以进一步降低运行速度为代价的。我们最近的观察表明,当将高介电常数的薄半导体材料与低介电常数的介电材料结合在一起时,最佳的SGT性能就会出现,这种设计与传统方法相反,但与第一原理一致。在这个项目中,我们将展示sgt和电路,通过将器件架构的优势与悬浮晶体硅和锗膜的材料特性相结合,达到迄今为止无法达到的性能和能源效率水平。这些材料的载流子迁移率,大大优于通常的薄膜,以及特殊的SGT功能特征所提供的几何缩放,将使电路比以前基于SGT的设计快100倍,节能10倍。通过明确地融合薄膜和“传统硅”为基础的方法,这些设备将成为具有内置传感、信号调节和决策功能的高效可穿戴、即时护理和分布式传感系统的独特构建模块。即使我们将使用与传统芯片相匹配的材料,我们的方法也不会依赖于昂贵的最先进的制造设施,从而缓解复杂芯片(如处理器和人工智能加速器)急需的制造能力,同时为新兴的传感器生态系统提供变革性功能。在这个最初的项目中,将探索制造路线,但作为次要问题。我们将主要专注于展示一个突破性的概念,通过创新地结合以前不同的材料和制造理念。在高风险,高回报的方法中,我们将确认晶体管操作,不仅作为放大器和信号调理阶段,而且潜在地作为生物,化学和机械刺激的传感器。我们将建立设计规则和指导方针,以数值模拟和材料和器件特性为支持。因此,这些进步将全面代表一个工具包,用于实现高度通用、多用途的传感和处理系统,以实现超越物联网的互联未来。作为多产的学术和工业进步的催化剂,这项研究将坚定地为保持英国在新兴电子技术方面的领导地位做出贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Radu Sporea其他文献

Analytical Models for Delay and Power Analysis of Zero-VGS Load Unipolar Thin-Film Transistor Logic Circuits
零 VGS 负载单极薄膜晶体管逻辑电路的延迟和功耗分析模型
Source-Gated Transistors for Power- and Area-Efficient AMOLED Pixel Circuits
用于高效节能和面积高效的 AMOLED 像素电路的源门晶体管
  • DOI:
    10.1109/jdt.2013.2293181
  • 发表时间:
    2014-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaoli Xu;Radu Sporea;Xiaojun Guo
  • 通讯作者:
    Xiaojun Guo

Radu Sporea的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Radu Sporea', 18)}}的其他基金

A new low-complexity paradigm for analogue computation and hardware learning
用于模拟计算和硬件学习的新的低复杂度范式
  • 批准号:
    EP/V002759/1
  • 财政年份:
    2021
  • 资助金额:
    $ 106.53万
  • 项目类别:
    Fellowship
Design for high-yield manufacturing of printed circuits
印刷电路高良率制造设计
  • 批准号:
    EP/R028559/1
  • 财政年份:
    2018
  • 资助金额:
    $ 106.53万
  • 项目类别:
    Research Grant

相似海外基金

3D printer for Additively Manufactured Electronics
用于增材制造电子产品的 3D 打印机
  • 批准号:
    539303076
  • 财政年份:
    2024
  • 资助金额:
    $ 106.53万
  • 项目类别:
    Major Research Instrumentation
Recyclable, smart and highly efficient wire-shaped solar cells waved portable/wearable electronics
可回收、智能、高效的线形太阳能电池挥舞着便携式/可穿戴电子产品
  • 批准号:
    24K15389
  • 财政年份:
    2024
  • 资助金额:
    $ 106.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SBIR Phase II: Innovative Two-Phase Cooling with Micro Closed Loop Pulsating Heat Pipes for High Power Density Electronics
SBIR 第二阶段:用于高功率密度电子产品的创新两相冷却微闭环脉动热管
  • 批准号:
    2321862
  • 财政年份:
    2024
  • 资助金额:
    $ 106.53万
  • 项目类别:
    Cooperative Agreement
I-Corps: Translation potential of 3D electronics manufacturing by integrated 3D printing and freeform laser induction
I-Corps:通过集成 3D 打印和自由形式激光感应实现 3D 电子制造的转化潜力
  • 批准号:
    2412186
  • 财政年份:
    2024
  • 资助金额:
    $ 106.53万
  • 项目类别:
    Standard Grant
CAREER: Graded and Reliable Aerosol Deposition for Electronics (GRADE): Understanding Multi-Material Aerosol Jet Printing with In-Line Mixing
职业:电子产品的分级且可靠的气溶胶沉积 (GRADE):了解通过在线混合进行多材料气溶胶喷射打印
  • 批准号:
    2336356
  • 财政年份:
    2024
  • 资助金额:
    $ 106.53万
  • 项目类别:
    Standard Grant
AI for Productive Research & Innovation in eLectronics (APRIL) Hub
人工智能促进高效研究
  • 批准号:
    EP/Y029763/1
  • 财政年份:
    2024
  • 资助金额:
    $ 106.53万
  • 项目类别:
    Research Grant
CAREER: Manufacturing of Solid Particle-Liquid Metal Mixtures for Soft Robotics and Stretchable Electronics
职业:制造用于软机器人和可拉伸电子产品的固体颗粒-液体金属混合物
  • 批准号:
    2339780
  • 财政年份:
    2024
  • 资助金额:
    $ 106.53万
  • 项目类别:
    Standard Grant
Vertical GaN-on-Si membrane power transistors: Efficient power electronics for mass-market applications (VertiGaN)`
垂直硅基氮化镓薄膜功率晶体管:面向大众市场应用的高效电力电子器件 (VertiGaN)`
  • 批准号:
    EP/X014924/1
  • 财政年份:
    2024
  • 资助金额:
    $ 106.53万
  • 项目类别:
    Research Grant
CAREER: Integrating Magnetism into Noncentrosymmetric Frameworks for Spin-based Electronics
职业:将磁性集成到基于自旋电子的非中心对称框架中
  • 批准号:
    2338014
  • 财政年份:
    2024
  • 资助金额:
    $ 106.53万
  • 项目类别:
    Continuing Grant
Solution-based Transition Metal Dichalcogenides for Flexible Neuromorphic Electronics
用于柔性神经形态电子器件的基于溶液的过渡金属二硫属化物
  • 批准号:
    EP/Y001567/1
  • 财政年份:
    2024
  • 资助金额:
    $ 106.53万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了