High-temperature electromechanical properties and atomistic transport processes in AlN bulk crystals

AlN块状晶体的高温机电性能和原子输运过程

基本信息

项目摘要

Apart from the use as substrate for optoelectronic devices, single crystalline aluminum nitride shows attractive properties if used as piezoelectric sensors at temperatures above 800 °C. These properties offer new applications like resonant pressure and temperature sensors for turbines and engines. The predominant covalent bonds of the atoms in AlN result in high thermal stability and low losses of piezoelectric resonators. To take advantage of these properties, high quality bulk crystals are required. Presently, their availability is limited.Preliminary investigations clearly demonstrate the appearance of bulk acoustic wave resonances up to 900 °C which is the maximum temperature applied so far in this study. However, disturbances of the resonances are observed depending on the resonance mode and the crystal orientation. Nevertheless, the AlN crystals show extraordinary properties in comparison to piezoelectric oxide crystals which motivate the materials choice for this project.The primary objective of the anticipated research is the further improvement of AlN bulk crystals, thereby producing large and nearly defect free boules. The starting point is given by AlN crystals of the Institute for Crystal Growth (IKZ), which show in the applicants opinion a worldwide leading crystal quality due to their low structural defect density. The research strategy is based on the identification of prevailing atomistic transport processes at temperatures up to 1300 °C and its correlation with the growth parameters and the acoustic damping in order to improve the growth process and to determine the operation limits. Open questions include the effect and the interaction of point and structural defects as well as the electromechanical properties at high temperatures. With respect to applications, the complete set of piezoelectric, dielectric, and elastic constants, the conductivity, and the thermal expansion of AlN must be determined up to temperatures of 1300 °C. In an advanced stage of the project the long-term degradation should be investigated at high temperatures. This task is focused on the oxidation of AlN, the degradation of electrical contacts and the electromechanical properties.The IKZ team prepares and optimizes AlN bulk crystals with respect to their use as high-temperature piezoelectric transducers. Further, it provides for cutting, polishing, and characterization of chemical, optical, and structural properties of the samples. At the Technical University of Clausthal the focus lies on defect chemistry, atomistic transport, electromechanical properties, and the correlation of these properties in the temperature range between room temperature and 1300 °C. The approach takes advantage of the complementary competencies of the applicants. Special emphasis is put on the modeling of defect levels.
除了用作光电器件的衬底外,单晶氮化铝还可在800 °C以上的温度下用作压电传感器。这些特性提供了新的应用,如涡轮机和发动机的谐振压力和温度传感器。氮化铝中原子间的共价键使压电谐振器具有很高的热稳定性和很低的损耗。为了利用这些特性,需要高质量的块状晶体。目前,它们的可用性是有限的。初步调查清楚地表明,体声波共振的外观高达900 °C,这是迄今为止在本研究中应用的最高温度。然而,根据共振模式和晶体取向观察到共振的干扰。然而,AlN晶体显示出非凡的性能相比,压电氧化物晶体,激励材料的选择为这个project.The预期的研究的主要目标是进一步改善AlN块体晶体,从而产生大的和几乎无缺陷的梨晶。起始点由晶体生长研究所(IKZ)的AlN晶体给出,在申请人看来,由于其低结构缺陷密度,其显示出世界领先的晶体质量。研究战略的基础是确定在高达1300 °C的温度下的主要原子输运过程及其与生长参数和声阻尼的相关性,以改善生长过程并确定操作限制。开放的问题包括点和结构缺陷的影响和相互作用,以及在高温下的机电性能。在应用方面,AlN的压电、介电和弹性常数、电导率和热膨胀的完整集合必须在高达1300 °C的温度下确定。在项目的后期阶段,应研究高温下的长期降解情况。该任务的重点是AlN的氧化、电接触的退化和机电性能。IKZ团队制备并优化AlN块体晶体,以用于高温压电换能器。此外,它提供切割、抛光和样品的化学、光学和结构性质的表征。在Clausthal技术大学,重点是缺陷化学,原子输运,机电性能,以及这些性能在室温和1300 °C之间的温度范围内的相关性。该方法利用了申请人的互补能力。特别强调的是把缺陷级别的建模。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Matthias Bickermann其他文献

Professor Dr.-Ing. Matthias Bickermann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Matthias Bickermann', 18)}}的其他基金

Technology development for the growth of semi-insulating bulk GaN and investigation of in-situ carbon doping
半绝缘体GaN生长技术开发及原位碳掺杂研究
  • 批准号:
    237652711
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Multiskalenmodellierung zum Verständnis der Facettierung und des orientierungsabhängigen Wachstums von Aluminiumnitirid-Volumenkristallen aus der Gasphase
多尺度建模以了解气相氮化铝块状晶体的刻面和方向相关生长
  • 批准号:
    175289588
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Herstellung und Charakterisierung von Volumenkristallen aus der Mischkristallreihe (AIN)x(SiC)1-x
混合晶体系列 (AIN)x(SiC)1-x 体积晶体的生产和表征
  • 批准号:
    114687075
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Phase-field Model of Electromechanical and Optical Properties of Ferroelectric Domain Structures
铁电畴结构机电和光学特性的相场模型
  • 批准号:
    2133373
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Ferroelectric bilayer composites with giant electromechanical properties.
具有巨大机电性能的铁电双层复合材料。
  • 批准号:
    DP220102790
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Enhancement of the Electromechanical Properties of Three-Dimensional Printed Nanocomposites through Microstructural Optimizations
通过微观结构优化增强三维打印纳米复合材料的机电性能
  • 批准号:
    532992-2019
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
Electromechanical Properties of Single-Molecule Junctions
单分子结的机电特性
  • 批准号:
    20K05245
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Enhancement of the Electromechanical Properties of Three-Dimensional Printed Nanocomposites through Microstructural Optimizations
通过微观结构优化增强三维打印纳米复合材料的机电性能
  • 批准号:
    532992-2019
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
Enhancement of the Electromechanical Properties of Three-Dimensional Printed Nanocomposites through Microstructural Optimizations
通过微观结构优化增强三维打印纳米复合材料的机电性能
  • 批准号:
    532992-2019
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
Electromechanical Properties and Deformation of Biomembranes
生物膜的机电特性和变形
  • 批准号:
    1748049
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme Enhancement of the Electromechanical Properties of Soft Nano-Particulate Composites via Interphases
合作研究:通过界面极大增强软纳米颗粒复合材料的机电性能
  • 批准号:
    1662720
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Arrhythmia mapping using electromechanical wave imaging
使用机电波成像进行心律失常绘图
  • 批准号:
    10595431
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Collaborative Research: Extreme Enhancement of the Electromechanical Properties of Soft Nano-Particulate Composites via Interphases
合作研究:通过界面极大增强软纳米颗粒复合材料的机电性能
  • 批准号:
    1661853
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了