Electrostatics of Antibiotic Resistance-Measuring the Evolution of Electric Fields in beta-Lactamases Using the Vibrational Stark Effect

抗生素耐药性的静电学 - 利用振动斯塔克效应测量 β-内酰胺酶中电场的演变

基本信息

  • 批准号:
    323611954
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Fellowships
  • 财政年份:
    2016
  • 资助国家:
    德国
  • 起止时间:
    2015-12-31 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Antibiotics saved countless lives and are indispensable agents in our health system. At the same time their extensive use and misuse led to the appearance of severe antibacterial resistances that are responsible for 15 000 death p.a. only in Germany and are thus regarded as a major public health thread by the German Federal Government. Beta-Lactam antibiotics are the most frequently used antibacterial drugs and aim at the inhibition of the cell wall-synthesis. However, the continual development of novel beta-lactams caused the emergence and mutational evolution of hundreds of interceptor proteins called beta-lactamases that confer resistance against these drugs. These proteins deactivate beta-lactam antibiotics via a hydrogen-bond (H-bond) mediated chemical mechanism: the formation of a beta-lactam acyl-enzyme ester and its subsequent hydrolysis. Only recently, it was shown that H-bonds exert immense electric fields and can provide a major driving force accelerating enzymatic reaction rates by 5 orders of magnitude. A similar situation is expected in beta-lactamases where very strong H-bonds, e.g. between the beta-lactam and oxyanion hole in the active sites, may uniquely power and thus regulate resistance to antibiotics. Intriguingly, beta-lactams have an intrinsic so-called Stark reporter group i.e. the beta-lactam carbonyl group that allows determining electric fields using the vibrational Stark effect. Using an interdisciplinary approach combining biology, vibrational spectroscopy, and theory, the proposed project aims at tracking the evolution of the electric fields within the active sites of beta-lactamases along the line of clinically documented mutants responsible for the emergence of antibiotic resistances. Specifically, this work will focus on the evolutionary pathway TEM-1 - TEM-12 - TEM-10 - TEM-5 (CAZ-1) leading to extended-spectrum beta-lactamases (ESBL) that already hydrolyse antibiotics such as 3rd generation cephalosporins. The knowledge obtained from this project is of highest biomedical relevance and can help tackling the global thread of antimicrobial resistance.
抗生素挽救了无数生命,是我们卫生系统中不可或缺的药物。与此同时,它们的广泛使用和滥用导致了严重的抗菌素耐药性的出现,每年造成15000人死亡。仅在德国,因此被德国联邦政府视为主要的公共卫生问题。β-内酰胺类抗生素是最常用的抗菌药物,其目的是抑制细胞壁合成。然而,新型β-内酰胺类药物的不断发展导致了数百种称为β-内酰胺酶的拦截蛋白的出现和突变进化,这些蛋白赋予了对这些药物的耐药性。这些蛋白质通过氢键(H-键)介导的化学机制使β-内酰胺抗生素失活:形成β-内酰胺酰基酶酯及其随后的水解。直到最近,才显示H-键施加巨大的电场,并且可以提供将酶促反应速率加速5个数量级的主要驱动力。在β-内酰胺酶中预期类似的情况,其中非常强的H-键,例如在β-内酰胺和活性位点中的氧阴离子空穴之间,可以独特地提供动力,从而调节对抗生素的抗性。有趣的是,β-内酰胺具有固有的所谓斯塔克报告基团,即β-内酰胺羰基,其允许使用振动斯塔克效应确定电场。利用生物学,振动光谱学和理论相结合的跨学科方法,拟议的项目旨在跟踪电场的演变,沿着沿着线的β-内酰胺酶的活性位点的临床记录的突变体负责抗生素耐药性的出现。具体来说,这项工作将集中在进化途径TEM-1 - TEM-12 - TEM-10 - TEM-5(CAZ-1)导致超广谱β-内酰胺酶(ESBL),已经水解抗生素,如第三代头孢菌素。从该项目中获得的知识具有最高的生物医学相关性,可以帮助解决全球抗菌素耐药性问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Jacek Artur Kozuch其他文献

Dr. Jacek Artur Kozuch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Jacek Artur Kozuch', 18)}}的其他基金

Verifying the Concept of Extreme Electric Fields in Proteins using Experimentally Refined Vibrational Spectroscopic Maps
使用实验精制的振动光谱图验证蛋白质中极端电场的概念
  • 批准号:
    493270578
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Protein Folding and Misfolding at Membrane Interfaces under Electrostatic Control: Combining Vibrational Stark Effect, Surface-Enhanced, and Nano-Infrared Spectroscopy
静电控制下膜界面的蛋白质折叠和错误折叠:结合振动斯塔克效应、表面增强和纳米红外光谱
  • 批准号:
    500707750
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

水环境中新兴污染物类抗生素效应(Like-Antibiotic Effects,L-AE)作用机制研究
  • 批准号:
    21477024
  • 批准年份:
    2014
  • 资助金额:
    86.0 万元
  • 项目类别:
    面上项目

相似海外基金

Ecological and Evolutionary Drivers of Antibiotic Resistance in Patients
患者抗生素耐药性的生态和进化驱动因素
  • 批准号:
    EP/Y031067/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
  • 批准号:
    2307222
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Molecular Epidemiology of Antibiotic Resistance in Clostridioides difficile
艰难梭菌抗生素耐药性的分子流行病学
  • 批准号:
    502587
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
  • 批准号:
    2307223
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
DNA glycosylases involved in interstrand crosslink repair and antibiotic self-resistance
DNA糖基化酶参与链间交联修复和抗生素自身抗性
  • 批准号:
    2341288
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
  • 批准号:
    MR/Y013131/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Determining structural dynamics of membrane proteins in their native environment: focus on bacterial antibiotic resistance
确定膜蛋白在其天然环境中的结构动力学:关注细菌抗生素耐药性
  • 批准号:
    MR/X009580/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
CAREER: Systems Microbiology and InterdiscipLinary Education for Halting Environmental Antibiotic Resistance Transmission (SMILE HEART)
职业:阻止环境抗生素耐药性传播的系统微生物学和跨学科教育(SMILE HEART)
  • 批准号:
    2340818
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Canadian antibiotic prescribing feedback initiative: Building a national framework to combat antimicrobial resistance in primary care (CANBuild-AMR)
加拿大抗生素处方反馈倡议:建立国家框架以应对初级保健中的抗菌药物耐药性 (CANBuild-AMR)
  • 批准号:
    487020
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Reinforcing the battle at the bacterial cell wall: Structure-guided characterization and inhibition of beta-lactam antibiotic resistance signalling mechanisms
加强细菌细胞壁的战斗:β-内酰胺抗生素耐药信号机制的结构引导表征和抑制
  • 批准号:
    480022
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了