Indirect Computation of Robustness and Performance Guarantees for Adaptive Controllers

自适应控制器鲁棒性和性能保证的间接计算

基本信息

项目摘要

Due to the high safety requirements in the field of aviation, flight control systems of modern aircraft need to provide exceptional robustness characteristics. To that end, flight control systems have to satisfy certain minimal performance requirements for all expected uncertainties and disturbances. As the performance of a conventional flight control system degrades with increasing modeling uncertainty, an unsatisfactory tradeoff between robustness and performance is often inevitable. As opposed to this, adaptive control allows for a more favorable tradeoff between these contradictory objectives. In contrast to conventional flight control systems, the controller gains of an adaptive controller adjust to the plant during runtime. While the capabilities of adaptive flight control systems have been demonstrated in several flight test campaigns, they have not been deployed in commercial applications. A major obstacle for their commercial use is the lack of reliable methods, which guarantee robustness and performance. For this reason, this proposal aims at the development of novel methods for the computation of measures for robustness and performance of adaptive control systems. Up to now, the computation of robustness and performance measures followed a direct approach. As an example, consider the computation of bounds for Lp-norms of the tracking error between the desired closed-loop response and the actual closed-loop response. In practice, computable bounds of these measures are highly conservative such that they do not provide acceptable guarantees for robustness and performance. For this reason, an indirect approach shall be investigated within this proposal. This approach derives from the observation that a conventional flight control system provides satisfactory robustness and performance in the presence of all expected uncertainties. In order to mitigate these uncertainties, the conventional control system is augmented by an additional adaptive control loop. Unlike most adaptive controllers, this adaptive controller aims at reducing the error between the nominal plant model and the actual plant. Hence, from the conventional flight control system's perspective, the adaptive controller corresponds to additional unmodeled dynamics. The indirect approach shall therefore prove that these unmodeled dynamics never deteriorate the robustness and performance of the conventional flight control system. To that end, novel metrics are to be developed which verify that the plant, enhanced with adaptation, is always closer to the nominal plant model than the plant without an additional adaptive element. In this case, the robustness and performance guarantees of the conventional flight control system transfer to the adaptively augmented flight control system.
由于航空领域的高安全性要求,现代飞机的飞行控制系统需要提供特殊的鲁棒性特性。为此,飞行控制系统必须满足所有预期的不确定性和干扰的某些最低性能要求。随着模型不确定性的增加,传统飞行控制系统的性能下降,鲁棒性和性能之间的折衷往往是不可避免的。与此相反,自适应控制允许在这些矛盾的目标之间进行更有利的权衡。与传统的飞行控制系统相比,自适应控制器的控制器增益在运行期间调整到对象。虽然自适应飞行控制系统的能力已经在几次飞行试验中得到证明,但它们还没有在商业应用中部署。其商业用途的一个主要障碍是缺乏可靠的方法,保证鲁棒性和性能。出于这个原因,本建议的目的是在发展的新方法的计算措施的鲁棒性和自适应控制系统的性能。到目前为止,鲁棒性和性能度量的计算遵循直接的方法。作为一个例子,考虑期望闭环响应和实际闭环响应之间的跟踪误差的Lp范数的界限的计算。在实践中,这些措施的可计算的界限是高度保守的,这样他们不提供可接受的保证的鲁棒性和性能。因此,应在本建议书中研究间接方法。这种方法来自于这样的观察,即传统的飞行控制系统在所有预期的不确定性的存在下提供令人满意的鲁棒性和性能。为了减轻这些不确定性,传统的控制系统是由一个额外的自适应控制回路。与大多数自适应控制器不同,这种自适应控制器旨在减小标称对象模型与实际对象之间的误差。因此,从常规飞行控制系统的角度来看,自适应控制器对应于附加的未建模动态。因此,间接方法应证明,这些未建模动态决不会使常规飞行控制系统的鲁棒性和性能恶化。为此,新的指标是要开发的工厂,增强自适应,总是更接近标称工厂模型比工厂没有一个额外的自适应元件。在这种情况下,传统飞行控制系统的鲁棒性和性能保证转移到自适应增广飞行控制系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Florian Holzapfel其他文献

Professor Dr.-Ing. Florian Holzapfel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Florian Holzapfel', 18)}}的其他基金

Robust dynamic programming approach to aircraft control problems with disturbances
鲁棒动态规划方法解决飞机干扰控制问题
  • 批准号:
    262773078
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Adaptive Stability Augmentation and Model Predictive Trajectory Tracking Control for Flight Systems
飞行系统的自适应稳定性增强和模型预测轨迹跟踪控制
  • 批准号:
    255465855
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Flugbahnoptimierung mit automatischer abschnittsweiser Adaption der Modellierungstiefe an physikalische Dynamikanforderungen
通过自动逐段调整建模深度以适应物理动态要求来进行轨迹优化
  • 批准号:
    189795307
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Bewegungsmodell-basierte Filtertechniken zur Navigation mit miniaturisierten Sensoren
基于运动模型的微型传感器导航过滤技术
  • 批准号:
    175142409
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

基于分位数g-computation的多污染物联合空气质量健康指数构建及预测效果评价
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于g-computation控制纵向数据未测混杂因素的因果推断模型构建及应用研究
  • 批准号:
    81903416
  • 批准年份:
    2019
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CIF: Small: Efficiency and Robustness of Secure Computation
CIF:小:安全计算的效率和稳健性
  • 批准号:
    2327981
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Efficiency, Structure and Robustness in Algebraic Computation
代数计算的效率、结构和鲁棒性
  • 批准号:
    RGPIN-2018-04950
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Efficiency, Structure and Robustness in Algebraic Computation
代数计算的效率、结构和鲁棒性
  • 批准号:
    RGPIN-2018-04950
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
CIF: Small: Alpha Loss: A New Framework for Understanding and Trading Off Computation, Accuracy, and Robustness in Machine Learning
CIF:小:Alpha 损失:理解和权衡机器学习中的计算、准确性和鲁棒性的新框架
  • 批准号:
    2007688
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Efficiency, Structure and Robustness in Algebraic Computation
代数计算的效率、结构和鲁棒性
  • 批准号:
    RGPIN-2018-04950
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Efficiency, Structure and Robustness in Algebraic Computation
代数计算的效率、结构和鲁棒性
  • 批准号:
    RGPIN-2018-04950
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Phase-field computation of brittle fracture: robustness, efficiency, and characterisation of solution non-uniqueness
脆性断裂的相场计算:稳健性、效率和解非唯一性表征
  • 批准号:
    328873018
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Efficiency, Structure and Robustness in Algebraic Computation
代数计算的效率、结构和鲁棒性
  • 批准号:
    RGPIN-2018-04950
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Bayesian inference: robustness, computation, and applications
贝叶斯推理:稳健性、计算和应用
  • 批准号:
    183772-1996
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Bayesian inference: robustness, computation, and applications
贝叶斯推理:稳健性、计算和应用
  • 批准号:
    183772-1996
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了