Phase-field computation of brittle fracture: robustness, efficiency, and characterisation of solution non-uniqueness
脆性断裂的相场计算:稳健性、效率和解非唯一性表征
基本信息
- 批准号:328873018
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2018
- 资助国家:德国
- 起止时间:2017-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modelling and accurate prediction of complicated fracture processes in elastic solids including crack initiation, propagation, branching, and coalescence, is a very challenging topic of engineering interest. We focus on brittle materials where fracture occurs prior to significant plastic (permanent) deformation.The phase-field approach enables realistic simulations of such material failure processes by associating a continuous field (the crack phase-field) to the state of the material, ranging from intact to fully broken. Models of material softening may result in mathematically non-unique solutions. Their probability of appearance is in theory determined by energetic relations, and in the real material by random inhomogeneities.In deterministic computations the following difficulties appear: sharp cracks are modelled by a steep variation of the phase-field, necessitating very fine meshes in numerical discretisations which may be computationally very expensive. To deal with this via adaptive meshing, the development of efficient and reliable error estimators is required. As damage evolution and fracture are irreversible processes, the solution evolves in time, computationally in discrete time-steps. The time-step choice strongly influences the solution process and the possible appearance of non-uniqueness. Error indicators will be developed to control the time-step selection as regards algorithmic efficiency and robustness. In each time-step, a possibly non-convex energy functional has to be minimised displaying multiple local minima and hence causing problems for numerical algorithms. Existing partitioned and monolithic approaches will be further advanced as regards the robustness and efficiency. Particular attention will be paid to the capture of all local minima.To capture the non-unique nature of solutions, the probability of their appearance (determined by their energetic relations) will be described by random fields. This non-uniqueness computationally appears with different mesh-refinements, time-stepping algorithms, and within the minimisation algorithm in each step. All of these will be parameterised locally by appropriate random variables, thus capturing the evolution of all possible solutions via random fields.The description of the crack propagation process will model both the displacement and phase-field in each point in space and each instant in time as a random variable, which then is a spatio-temporal random field. This describes the different probabilities of the state of the material, i.e. probability of crack development and the associated displacement.Such an approach generates a large number of parameters which describe the solutions and their evolution. Numerically sparse techniques for dealing with high-dimensional parametric problems will be further developed to suit the phase-field approach.
弹性固体中复杂断裂过程(包括裂纹萌生、扩展、分支和合并)的建模和准确预测是一个非常具有挑战性的工程课题。我们专注于在显着塑性(永久)变形之前发生断裂的脆性材料。相场方法通过将连续场(裂纹相场)与材料状态(从完整到完全断裂)相关联,可以对此类材料失效过程进行真实模拟。材料软化模型可能会产生数学上非唯一的解决方案。它们出现的概率在理论上是由能量关系决定的,而在实际材料中则是由随机不均匀性决定的。在确定性计算中,会出现以下困难:通过相场的急剧变化来模拟尖锐裂纹,需要在数值离散中使用非常精细的网格,这可能在计算上非常昂贵。为了通过自适应网格划分来解决这个问题,需要开发高效可靠的误差估计器。由于损伤演变和断裂是不可逆的过程,因此解决方案会随着时间的推移而演变,在计算上以离散的时间步长进行。时间步长的选择强烈影响求解过程和可能出现的非唯一性。将开发误差指示器来控制算法效率和鲁棒性方面的时间步选择。在每个时间步长中,必须最小化可能的非凸能量泛函,以显示多个局部最小值,从而导致数值算法出现问题。现有的分区和整体方法将在稳健性和效率方面得到进一步提升。将特别注意捕获所有局部最小值。为了捕获解的非唯一性,它们出现的概率(由它们的能量关系确定)将由随机场描述。这种非唯一性在计算上表现为不同的网格细化、时间步进算法以及每个步骤中的最小化算法。所有这些都将通过适当的随机变量进行局部参数化,从而通过随机场捕获所有可能解的演化。裂纹扩展过程的描述将空间中每个点和时间上每个瞬间的位移和相场建模为随机变量,这是一个时空随机场。这描述了材料状态的不同概率,即裂纹发展的概率和相关的位移。这种方法生成大量描述解决方案及其演变的参数。用于处理高维参数问题的数值稀疏技术将得到进一步发展,以适应相场方法。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Parameter identification for phase-field modeling of fracture: a Bayesian approach with sampling-free update
- DOI:10.1007/s00466-020-01942-x
- 发表时间:2020-11
- 期刊:
- 影响因子:4.1
- 作者:T. Wu;B. Rosic;L. Lorenzis;H. Matthies
- 通讯作者:T. Wu;B. Rosic;L. Lorenzis;H. Matthies
Crack propagation simulation without crack tracking algorithm: embedded discontinuity formulation with incompatible modes
- DOI:10.1016/j.cma.2021.114090
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:A. Stanic;B. Brank;A. Ibrahimbegovic;H. Matthies
- 通讯作者:A. Stanic;B. Brank;A. Ibrahimbegovic;H. Matthies
Stochastic phase-field modeling of brittle fracture: computing multiple crack patterns and their probabilities
- DOI:10.1016/j.cma.2020.113353
- 发表时间:2020-05
- 期刊:
- 影响因子:0
- 作者:T. Gerasimov;U. Römer;J. Vondrejc;H. Matthies;L. Lorenzis
- 通讯作者:T. Gerasimov;U. Römer;J. Vondrejc;H. Matthies;L. Lorenzis
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr. Laura De Lorenzis其他文献
Professorin Dr. Laura De Lorenzis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professorin Dr. Laura De Lorenzis', 18)}}的其他基金
Multiscale thermo-mechanical fracture analysis of polycrystalline silicon shells in photovoltaic modules by a combined phasefield – continuum damage approach.
采用相场连续损伤相结合的方法对光伏组件中的多晶硅壳进行多尺度热机械断裂分析。
- 批准号:
400853899 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Beyond isogeometric and stochastic collocation: maximizing efficiency in stochastic non-linear computational solid mechanics
超越等几何和随机搭配:最大化随机非线性计算固体力学的效率
- 批准号:
392510585 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Priority Programmes
Isogeometric and stochastic collocation methods for nonlinear probabilistic multiscale problems in solid mechanics
固体力学中非线性概率多尺度问题的等几何和随机配置方法
- 批准号:
255747201 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Priority Programmes
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于慧眼-HXMT宽能段观测的X射线吸积脉冲星磁场研究
- 批准号:12373051
- 批准年份:2023
- 资助金额:55.00 万元
- 项目类别:面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于太赫兹光谱近场成像技术的应力场测量方法
- 批准号:11572217
- 批准年份:2015
- 资助金额:120.0 万元
- 项目类别:面上项目
新型Field-SEA多尺度溶剂模型的开发与应用研究
- 批准号:21506066
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
个性化近场头相关传输函数的测量与快速定制
- 批准号:11104082
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
通用声场空间信息捡拾与重放方法的研究
- 批准号:11174087
- 批准年份:2011
- 资助金额:70.0 万元
- 项目类别:面上项目
飞秒双色场下分子的三维无场准直动力学研究
- 批准号:11004078
- 批准年份:2010
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
生物膜式反应器内复杂热物理参数动态场分布的多尺度实时测量方法研究
- 批准号:50876120
- 批准年份:2008
- 资助金额:36.0 万元
- 项目类别:面上项目
相似海外基金
Functional circuitry and computation of the visual thalamus
视觉丘脑的功能电路和计算
- 批准号:
10577537 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Field Computation Based Kernel for Vector 3D Printing
基于现场计算的矢量 3D 打印内核
- 批准号:
EP/X032213/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fellowship
CRCNS: Linking Synaptic Populations and Computation Using Statistical Mechanics
CRCNS:使用统计力学将突触群体和计算联系起来
- 批准号:
10830119 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Working towards an effective field theory of neural computation
致力于神经计算的有效场论
- 批准号:
545841-2020 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Research Project 3 - Theory and computation of internal state dynamics
研究项目3 - 内态动力学理论与计算
- 批准号:
10687146 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Dissecting the roles of timing in a canonical neural computation
剖析时序在规范神经计算中的作用
- 批准号:
10205535 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Working towards an effective field theory of neural computation
致力于神经计算的有效场论
- 批准号:
545841-2020 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Research Project 3 - Theory and computation of internal state dynamics
研究项目3 - 内态动力学理论与计算
- 批准号:
10047734 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Project 3 - Theory and computation of internal state dynamics
研究项目3 - 内态动力学理论与计算
- 批准号:
10490241 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Working towards an effective field theory of neural computation
致力于神经计算的有效场论
- 批准号:
545841-2020 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral














{{item.name}}会员




