ポリマー繊維整然配列によってヒドロゲル熱伝導率の研究について

聚合物纤维有序排列水凝胶导热性能研究

基本信息

  • 批准号:
    20J22608
  • 负责人:
  • 金额:
    $ 1.98万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2020
  • 资助国家:
    日本
  • 起止时间:
    2020-04-24 至 2023-03-31
  • 项目状态:
    已结题

项目摘要

1.The building of the time-domain thermoreflectance (TDTR) thermal property measurement system. Thermal property measurement is essential for understanding the transport and interaction processes of heat carriers and developing novel materials with desired thermal properties. Among the numerous measurement methods, TDTR offers unique advantages, including easy sample preparation, non-contact measurement, wide applicability, specific suitability for ultrathin films, thermal boundary conductance (TBC) measurement, and probing the ultrafast transport process. A TDTR measurement system with controll and data process programm has been developed with some new features, such as multiple objective lenses, wide range of modulation frequency, mapping sample stage, TDTR and TR-MOKE dual detectors.2.The TBC measurement of wafer bonding. In recent years, thermal management has become increasingly important for large-scale integrated circuits with the rising density of FETs integrated both horizontally and vertically in a limited space (3D ICs). Wafer bonding technology, which connects the device layer to a substrate with high thermal conductivity, holds promise for solving this issue. In that case, the thermal boundary conductance (TBC) of the interface between the two bonded wafers plays a vital role in thermal management performance. In this study, we developed a mapping system to obtain not only the value of TBC but also the spatial distribution of TBC of the Si-SiC sample, providing more detailed and stochastic knowledge about thermal transport at the interface.
1.时域热反射(TDTR)热性能测试系统的建立。热性能测量对于理解热载体的传输和相互作用过程以及开发具有所需热性能的新型材料至关重要。在众多的测量方法中,TDTR具有独特的优势,包括简单的样品制备,非接触式测量,广泛的适用性,特别适用于薄膜,热边界电导(TBC)测量和探测超快传输过程。研制了一套带有控制和数据处理程序的TDTR测量系统,该系统具有多物镜、宽调制频率范围、映射样品台、TDTR和TR-MOKE双探测器等特点。2.晶圆键合的TBC测量。近年来,随着在有限空间中水平和垂直集成的FET(3D IC)密度的增加,热管理对于大规模集成电路变得越来越重要。将器件层连接到具有高导热性的衬底的晶片键合技术有望解决这个问题。在这种情况下,两个键合晶片之间的界面的热边界传导(TBC)在热管理性能中起着至关重要的作用。在这项研究中,我们开发了一个映射系统,以获得不仅TBC的值,但也TBC的Si-SiC样品的空间分布,提供更详细的和随机的知识,在界面处的热传输。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scalable monolayer-functionalized nanointerface for thermal conductivity enhancement in copper/diamond composite
  • DOI:
    10.1016/j.carbon.2021.01.018
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Bin Xu;S. Hung;Shiqian Hu;Cheng Shao;Rulei Guo;Junho Choi;T. Kodama;Fu-Rong Chen;J. Shiomi
  • 通讯作者:
    Bin Xu;S. Hung;Shiqian Hu;Cheng Shao;Rulei Guo;Junho Choi;T. Kodama;Fu-Rong Chen;J. Shiomi
SiC-Si接合界面での熱伝導のマッピング測定
SiC-Si结界面热传导映射测量
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuji Yamauchi;Mitsuyoshi Ueda;Wataru Aoki;Rulei Guo
  • 通讯作者:
    Rulei Guo
Phase-transition-induced giant Thomson effect for thermoelectric cooling
  • DOI:
    10.1063/5.0077497
  • 发表时间:
    2022-03-01
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Modak, Rajkumar;Murata, Masayuki;Uchida, Ken-ichi
  • 通讯作者:
    Uchida, Ken-ichi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

GUO RULEI其他文献

GUO RULEI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
  • 批准号:
    23KJ0116
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Elucidation of Mechanism of Phonon Thermal Conductivity Reduction by Orbital Fluctuation for Development of Novel Thermal Functional Materials
阐明轨道涨落降低声子导热率的机制,以开发新型热功能材料
  • 批准号:
    23KJ0893
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Phonon-engineered extreme thermal conductivity of two-dimensional heterostructures
二维异质结构的声子工程极限导热率
  • 批准号:
    22KF0102
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
I-Corps: High thermal conductivity polymers and phase change materials based on graphene
I-Corps:基于石墨烯的高导热聚合物和相变材料
  • 批准号:
    2330247
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Standard Grant
Boron-based semiconductors - the next generation of high thermal conductivity materials
硼基半导体——下一代高导热材料
  • 批准号:
    EP/W034751/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Research Grant
Boron-based semiconductors - the next generation of high thermal conductivity materials
硼基半导体——下一代高导热材料
  • 批准号:
    EP/W035510/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Research Grant
Development of In-plane thermal conductivity measurement of thin film for realizing a consistent evaluation of thermoelectric performance of thin film
开发薄膜面内热导率测量以实现薄膜热电性能的一致评估
  • 批准号:
    23H01361
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of a novel high-strength graphene reinforced aluminum matrix composite with enhanced thermal conductivity
开发一种新型高强度石墨烯增强导热铝基复合材料
  • 批准号:
    559982-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Developments of neutron scattering, NMR, and thermal conductivity measurement techniques for the investigations of quantum phases in high magnetic fields
用于研究高磁场中量子相的中子散射、核磁共振和热导率测量技术的发展
  • 批准号:
    22H00104
  • 财政年份:
    2022
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Finding origins of the thermal conductivity lowered locally in a cell
寻找电池中局部热导率降低的根源
  • 批准号:
    22K19273
  • 财政年份:
    2022
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了