Upscaling and reliable two-scale Fourier/finite element-based simulations
升级且可靠的基于两尺度傅里叶/有限元的模拟
基本信息
- 批准号:324231889
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2017
- 资助国家:德国
- 起止时间:2016-12-31 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project, we focus on the two-scale modelling of deterministic and also stochastic elastic and inelastic problems in the small strain regime, such as elasto-plasticity with isotropic hardening. On the micro-scale we consider Fast Fourier Transform (FFT)-based solvers, enabling very efficient three-dimensional image-based studies. Building on our previous results on variational FFT-based techniques in the Fourier-Galerkin setting, we consider a scheme equivalent to the Moulinec-Suquet algorithm and an improved scheme based on exact integration. For a macro-scale problem, we consider the standard finite element method with FE2-like coupling procedures and also the mesh-in-element (MIEL) method, which allows to treat problems without the assumption of scale separation.The project will further increase the computational efficiency of FFT-based solvers (e.g. preconditioning, acceleration by low-rank techniques) for micro-scale problems, which will be modelled with random material fields. In the stochastic setting, discretisation and solution procedures within a variational setting will be developed, providing a probabilistic description of macro material properties. Alternative boundary conditions will be considered for FFT-based solvers to enable its coupling not only in the FE2-framework, but also in the MIEL method; the transfer of randomness from micro- to macro-scale will be of particular interest. For those coupled stochastic problems, two-scale quasi-Newton methods with emphasis on line-search and trust-region algorithms will be developed.As a result, the discretisation and solution procedures will be developed for two-scale nonlinear problems with FFT-based solvers on the micro-scale and FEM solvers on the macro-scale. We expect that the collaboration with the research group in the Czech Republic will lead to a significant increase in the efficiency of two-scale simulations with realistic microstructural representations, making them accessible on conventional computer platforms.
在这个项目中,我们专注于确定性和随机弹性和非弹性问题的小应变区,如各向同性硬化的弹塑性的双尺度建模。在微观尺度上,我们考虑基于快速傅里叶变换(FFT)的求解器,使非常有效的三维图像为基础的研究。基于我们以前的结果变分FFT为基础的技术在傅里叶-伽辽金设置,我们认为一个计划相当于Moulinec-Suquet算法和改进的计划的基础上精确积分。对于宏观问题,我们考虑了具有FE 2类耦合过程的标准有限元方法和允许在不进行尺度分离假设的情况下处理问题的单元网格(MIEL)方法,该项目将进一步提高基于FFT的求解器的计算效率(例如预处理,通过低秩技术加速)的微尺度问题,这将与随机材料场建模。在随机设置,离散化和解决方案的程序内的变分设置将开发,提供宏观材料性能的概率描述。替代边界条件将被认为是基于FFT的求解器,使其耦合不仅在FE 2框架,而且在MIEL方法;随机性从微观到宏观尺度的转移将特别感兴趣。对于这些耦合的随机问题,我们将发展双尺度拟牛顿法,着重于线搜索和信赖域算法,因此,我们将发展双尺度非线性问题的离散化和求解程序,在微观尺度上使用基于FFT的求解器,在宏观尺度上使用基于FEM的求解器。我们预计,与捷克共和国研究小组的合作将导致显着提高效率的两个规模的模拟与现实的微观结构表示,使他们在传统的计算机平台上访问。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Double-grid quadrature with interpolation-projection (DoGIP) as a novel discretisation approach: An application to FEM on simplexes
- DOI:10.1016/j.camwa.2019.05.021
- 发表时间:2017-10
- 期刊:
- 影响因子:0
- 作者:J. Vondrejc
- 通讯作者:J. Vondrejc
Energy-based comparison between the Fourier-Galerkin method and the finite element method
傅里叶伽辽金法与有限元法基于能量的比较
- DOI:10.1016/j.cam.2019.112585
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:J. Vondřejc;T.W.J. de Geus
- 通讯作者:T.W.J. de Geus
Iterative algorithms for the post-processing of high-dimensional data
- DOI:10.1016/j.jcp.2020.109396
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:Mike Espig;W. Hackbusch;A. Litvinenko;H. Matthies;E. Zander
- 通讯作者:Mike Espig;W. Hackbusch;A. Litvinenko;H. Matthies;E. Zander
FFT-based homogenisation accelerated by low-rank tensor approximations
通过低阶张量近似加速基于 FFT 的均质化
- DOI:10.1016/j.cma.2020.112890
- 发表时间:2020
- 期刊:
- 影响因子:7.2
- 作者:J. Vondřejc;D. Liu;M. Ladecký;H.G. Matthies
- 通讯作者:H.G. Matthies
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Hermann Georg Matthies其他文献
Professor Dr. Hermann Georg Matthies的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Hermann Georg Matthies', 18)}}的其他基金
Efficient functional representation of the structural mechanical response dependent on polymorphic uncertain parameters and uncertaintiesx
取决于多态不确定参数和不确定性的结构机械响应的有效函数表示x
- 批准号:
341531955 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Priority Programmes
SIZE EFFECT IN LOCALISED FAILURE: TESTING, UNCERTAINTY, MODELLING
局部失效中的尺寸效应:测试、不确定性、建模
- 批准号:
316704785 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Effective approaches and solution techniques for conditioning, robust design and control in the subsurface
用于地下调节、鲁棒设计和控制的有效方法和解决技术
- 批准号:
195436228 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Uncertainty Quantification and Updating in the Description of Heat and Moisture Transport in Heterogeneous Materials
异质材料中热湿传输描述的不确定性量化和更新
- 批准号:
162182726 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Bridging the translational divide from cells to patients: toward reliable neuromarkers of Batten disease
弥合从细胞到患者的翻译鸿沟:寻找巴顿病的可靠神经标志物
- 批准号:
10633140 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Bridging the translational divide from cells to patients: toward reliable neuromarkers of Batten disease
弥合从细胞到患者的翻译鸿沟:寻找巴顿病的可靠神经标志物
- 批准号:
10085501 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Bridging the translational divide from cells to patients: toward reliable neuromarkers of Batten disease
弥合从细胞到患者的翻译鸿沟:寻找巴顿病的可靠神经标志物
- 批准号:
10445283 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Bridging the translational divide from cells to patients: toward reliable neuromarkers of Batten disease
弥合从细胞到患者的翻译鸿沟:寻找巴顿病的可靠神经标志物
- 批准号:
10226346 - 财政年份:2020
- 资助金额:
-- - 项目类别:
A Nanoelectronic Strategy for Reliable Chronic Neural Recording
可靠的慢性神经记录的纳米电子策略
- 批准号:
10114717 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Developing Reliable In Silico Methods to Design Small Molecules Targeting RNA
开发可靠的计算机模拟方法来设计靶向 RNA 的小分子
- 批准号:
8297611 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Reliable Assembling of Colloidal Nanoparticles in Two and Three Dimensions by Dual-AFM-based Handling inside a Scanning Electron Microscope
通过在扫描电子显微镜内基于双 AFM 的处理实现二维和三维胶体纳米颗粒的可靠组装
- 批准号:
213422375 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Developing Reliable In Silico Methods to Design Small Molecules Targeting RNA
开发可靠的计算机模拟方法来设计靶向 RNA 的小分子
- 批准号:
8452078 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Building Optimum Reliable Systems through Value-at-Risk Criterion-based Two Stage Fuzzy Random Optimization Method
通过基于风险值准则的两阶段模糊随机优化方法构建最佳可靠系统
- 批准号:
23500289 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
RI: SMALL: LexE: Using Two-part Lexical Entrainment for More Efficient and Reliable Spoken Dialogue Systems
RI:小:LexE:使用两部分词汇夹带实现更高效、更可靠的口语对话系统
- 批准号:
0914927 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Continuing Grant