Computational prediction of regioselectivity in the metabolism of xenobiotics
外源物质代谢区域选择性的计算预测
基本信息
- 批准号:326167477
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Strategies for optimising the metabolic properties of drugs, cosmetics and agrochemicals often rely on the knowledge of the regioselectivity of metabolising enzymes. Computational methods have an enormous potential for predicting metabolically labile atom positions (sites of metabolism; SoMs) but are at an early state of development and have far-reaching limitations with respect to applicability, accuracy, interpretability and availability. The aim of this project is the systematic research and development of new computational methods that overcome these limitations and allow the accurate prediction of SoMs for a large variety of compounds, enzymes and species. A new and comprehensive high-quality dataset of substrates of metabolising enzymes and their expertly assigned mechanistic SoMs will be explored for model development for the first time. A range of different machine learning classifiers will be trained on an elaborate set of physically meaningful atomic descriptors. This will lead to a substantial expansion of the applicability and scope of these models and methods, from cytochrome P450-mediated metabolism toward full coverage of phase 1 + 2 metabolism, and from drug-like molecules to a broad range of xenobiotics and their metabolites. Problematic false positive prediction rates observed for most of the existing SoM predictors will be countered by the integration and combination of different types of models and further strategies. New methods for estimating prediction errors and the applicability domain will be investigated. Importantly, models for the assignment of biotransformation types to SoMs and qualitative estimation of metabolite abundance will also be developed, hence providing valuable additional information on the chemical structure and relevance of likely metabolites. The models will be subject to rigorous evaluation including the prospective validation in hepatocyte assays by an independent laboratory.
优化药物、化妆品和农用化学品的代谢特性的策略通常依赖于代谢酶的区域选择性的知识。计算方法在预测代谢不稳定的原子位置(代谢位点; SoM)方面具有巨大的潜力,但仍处于早期发展阶段,在适用性、准确性、可解释性和可用性方面存在深远的限制。该项目的目的是系统地研究和开发新的计算方法,克服这些限制,并允许准确预测各种化合物,酶和物种的SoMs。将首次探索一个新的、全面的高质量代谢酶底物数据集及其专业分配的机制SoM,用于模型开发。一系列不同的机器学习分类器将在一组精心设计的有物理意义的原子描述符上进行训练。这将导致这些模型和方法的适用性和范围的实质性扩展,从细胞色素P450介导的代谢到1 + 2相代谢的完全覆盖,以及从药物样分子到广泛的外源性物质及其代谢物。对于大多数现有的SoM预测器观察到的有问题的假阳性预测率将通过不同类型的模型和进一步策略的整合和组合来抵消。将研究估计预测误差的新方法和适用范围。重要的是,还将开发用于将生物转化类型分配给SoMs和定性估计代谢物丰度的模型,从而提供关于可能代谢物的化学结构和相关性的有价值的额外信息。这些模型将接受严格的评价,包括由独立实验室进行的肝细胞测定的前瞻性验证。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FAME 2: Simple and Effective Machine Learning Model of Cytochrome P450 Regioselectivity
- DOI:10.1021/acs.jcim.7b00250
- 发表时间:2017-08-01
- 期刊:
- 影响因子:5.6
- 作者:Sicho, Martin;Kops, Christina de Bruyn;Kirchmair, Johannes
- 通讯作者:Kirchmair, Johannes
NERDD: a web portal providing access to in silico tools for drug discovery
- DOI:10.1093/bioinformatics/btz695
- 发表时间:2020-02-15
- 期刊:
- 影响因子:5.8
- 作者:Stork, Conrad;Embruch, Gerd;Kirchmair, Johannes
- 通讯作者:Kirchmair, Johannes
GLORY: Generator of the Structures of Likely Cytochrome P450 Metabolites Based on Predicted Sites of Metabolism
- DOI:10.3389/fchem.2019.00402
- 发表时间:2019-06-12
- 期刊:
- 影响因子:5.5
- 作者:Kops, Christina de Bruyn;Stork, Conrad;Kirchmair, Johannes
- 通讯作者:Kirchmair, Johannes
ALADDIN: Docking Approach Augmented by Machine Learning for Protein Structure Selection Yields Superior Virtual Screening Performance
ALADDIN:通过机器学习增强蛋白质结构选择的对接方法可产生卓越的虚拟筛选性能
- DOI:10.1002/minf.201900103
- 发表时间:2019
- 期刊:
- 影响因子:3.6
- 作者:Bruyn Kops;Kirchmair
- 通讯作者:Kirchmair
Hit Dexter 2.0: Machine-Learning Models for the Prediction of Frequent Hitters
- DOI:10.1021/acs.jcim.8b00677
- 发表时间:2019-03-01
- 期刊:
- 影响因子:5.6
- 作者:Stork, Conrad;Chen, Ya;Kirchmair, Johannes
- 通讯作者:Kirchmair, Johannes
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Johannes Kirchmair其他文献
Professor Dr. Johannes Kirchmair的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于深穿透拉曼光谱的安全光照剂量的深层病灶无创检测与深度预测
- 批准号:82372016
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
高性能纤维混凝土构件抗爆的强度预测
- 批准号:51708391
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
隧道超前探测的三分量光纤地震加速度检波机理与应用研究
- 批准号:51079080
- 批准年份:2010
- 资助金额:32.0 万元
- 项目类别:面上项目
非编码RNA与蛋白质相互作用预测算法的研究
- 批准号:31000586
- 批准年份:2010
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
ALPACA - Advancing the Long-range Prediction, Attribution, and forecast Calibration of AMOC and its climate impacts
APACA - 推进 AMOC 及其气候影响的长期预测、归因和预报校准
- 批准号:
2406511 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
EAGER: Integrating Pathological Image and Biomedical Text Data for Clinical Outcome Prediction
EAGER:整合病理图像和生物医学文本数据进行临床结果预测
- 批准号:
2412195 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Audiphon (Auditory models for automatic prediction of phonation)
Audiphon(用于自动预测发声的听觉模型)
- 批准号:
24K03872 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
A robust ensemble Kalman filter to innovate short-range severe weather prediction
强大的集成卡尔曼滤波器创新短程恶劣天气预测
- 批准号:
24K07131 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Data-driven prediction of fatigue crack nucleation in directionally-solidified Ni-based superalloys
定向凝固镍基高温合金疲劳裂纹形核的数据驱动预测
- 批准号:
24K07230 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems
NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案
- 批准号:
2344357 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
I(eye)-SCREEN: A real-world AI-based infrastructure for screening and prediction of progression in age-related macular degeneration (AMD) providing accessible shared care
I(eye)-SCREEN:基于人工智能的现实基础设施,用于筛查和预测年龄相关性黄斑变性 (AMD) 的进展,提供可及的共享护理
- 批准号:
10102692 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Prediction, Monitoring and Personalized Recommendations for Prevention and Relief of Dementia and Frailty
预防和缓解痴呆症和衰弱的预测、监测和个性化建议
- 批准号:
10103541 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Multi-variable based vegetation monitoring and prediction during droughts
干旱期间基于多变量的植被监测与预测
- 批准号:
FT230100209 - 财政年份:2024
- 资助金额:
-- - 项目类别:
ARC Future Fellowships