Auto-Adaptive Learning from Weak Feedback for Interactive Lecture Translation

交互式讲座翻译的弱反馈自适应学习

基本信息

项目摘要

The goal of the proposed project is to enable the use statistical machine translation (SMT) for the difficult task of translation of university lectures. This is done by enhancing SMT by a mutually beneficial learning cycle, called auto-adaptive SMT, that incorporates the human for post-editing SMT output from which the system can learn immediately. In the ``traditional'' setup, post-editors are instructed to produce a perfect translation, which can be very resource-intensive, not only in terms of editing time but also in terms of a user's required language proficiency. In this project, it is our main goal to explore ways of learning from weaker feedback than a full post-edit. This feedback could consist of partial corrections or merely judgments on the quality of the SMT output. A central point is that in order to guarantee machine learnability, human feedback needs to contain a signal strong enough for statistical learning. This means that we are faced with a trade-off between machine learnability and elicitability of feedback from human users, which we will attempt to solve. Our research will focus on the design of efficient algorithms that perform learning from weak feedback, and on frontend/backend interfaces that support a practical use of the algorithms in field tests of interactive translation of university lectures.
该项目的目标是使用统计机器翻译(SMT)来完成大学讲座翻译的艰巨任务。这是通过一个互利的学习周期来增强SMT来实现的,称为自适应SMT,它包含了人类对SMT输出的后期编辑,系统可以立即从中学习。在“传统”设置中,要求后期编辑提供完美的翻译,这可能是非常资源密集型的,不仅在编辑时间方面,而且在用户所需的语言熟练程度方面。在这个项目中,我们的主要目标是探索从弱反馈中学习的方法,而不是完整的后期编辑。这种反馈可以包括部分校正或仅仅是对SMT输出质量的判断。一个中心点是,为了保证机器的可学习性,人类的反馈需要包含一个足够强的信号来进行统计学习。这意味着我们面临着机器学习能力和人类用户反馈的可启发性之间的权衡,我们将尝试解决这个问题。 我们的研究将集中在设计有效的算法,执行学习弱反馈,并在前端/后端接口,支持实际使用的算法在现场测试的交互式翻译的大学讲座。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cascaded Models with Cyclic Feedback for Direct Speech Translation
Joey NMT: A Minimalist NMT Toolkit for Novices
  • DOI:
    10.18653/v1/d19-3019
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Julia Kreutzer;Jasmijn Bastings;S. Riezler
  • 通讯作者:
    Julia Kreutzer;Jasmijn Bastings;S. Riezler
On-the-Fly Aligned Data Augmentation for Sequence-to-Sequence ASR
  • DOI:
    10.21437/interspeech.2021-1679
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tsz Kin Lam;Mayumi Ohta;Shigehiko Schamoni;S. Riezler
  • 通讯作者:
    Tsz Kin Lam;Mayumi Ohta;Shigehiko Schamoni;S. Riezler
Reliability and Learnability of Human Bandit Feedback for Sequence-to-Sequence Reinforcement Learning
  • DOI:
    10.18653/v1/p18-1165
  • 发表时间:
    2018-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Julia Kreutzer;Joshua Uyheng;S. Riezler
  • 通讯作者:
    Julia Kreutzer;Joshua Uyheng;S. Riezler
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Stefan Riezler其他文献

Professor Dr. Stefan Riezler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Stefan Riezler', 18)}}的其他基金

Grounding Statistical Machine Translation in Perception and Action
为统计机器翻译奠定感知和行动的基础
  • 批准号:
    259623987
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Cross-language Learning-to-Rank for Patent Retrieval, Phase 2: Weakly Supervised Learning of Cross-lingual Systems
专利检索的跨语言学习排名,第二阶段:跨语言系统的弱监督学习
  • 批准号:
    211613886
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
  • 批准号:
    2327452
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
  • 批准号:
    2338512
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Personalized Online Adaptive Learning System
个性化在线自适应学习系统
  • 批准号:
    23K20186
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CRII: CSR: Adaptive Federated Continuous Learning on Heterogeneous Edge Devices with Unlabeled Data
CRII:CSR:具有未标记数据的异构边缘设备的自适应联合连续学习
  • 批准号:
    2348279
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Towards Environment-Aware Adaptive Safety for Learning-Enabled Multiagent Systems with Application to Target Drone Capturing
职业:为支持学习的多智能体系统实现环境感知的自适应安全,并应用于目标无人机捕获
  • 批准号:
    2336189
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Adaptive Multi-Source Transfer Learning Approaches for Environmental Challenges
应对环境挑战的自适应多源迁移学习方法
  • 批准号:
    EP/Y002539/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Adaptive Tensor Network Decomposition for Multidimensional Machine Learning Theory and Applications
多维机器学习理论与应用的自适应张量网络分解
  • 批准号:
    24K20849
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Cognitive Diagnosis in E-Learning: A Nonparametric Approach for Computerized Adaptive Testing
职业:电子学习中的认知诊断:计算机自适应测试的非参数方法
  • 批准号:
    2423762
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
  • 批准号:
    2338555
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了