Geometric graphs and applications

几何图形及其应用

基本信息

  • 批准号:
    327566472
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2017
  • 资助国家:
    德国
  • 起止时间:
    2016-12-31 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Geometric graphs are graphs whose vertices and edges are identified with points and (metric) line segments, respectively. Known examples are Delaunay triangulations or 1-skeletons of polytopes. As "geometrization" of an abstract incidence structure, the notion has many applications, in disciplines like optimization ("trees" in location science), discrete geometry (e.g., Erdös-type problems on metrically extremal point sets), convexity (for instance, polytope theory or bodies of constant width), and also in various non-Euclidean geometries (e.g., in general normed spaces). With this "Neuantrag", Prof. H. Martini (Applicant, TU Chemnitz/Germany) applies together with Prof. A. Kamal (Applicant, University teacher at Alquds University, Abu Dis Jerusalem/Palestine), and Prof. Yaakov S. Kupitz (Applicant, Lecturer at the Hebrew University in Jerusalem/Israel) for a trilateral research project referring to geometric graphs and their applications. We have chosen this subject since all of us work in this field already for many years and published jointly related papers. So we developed already a broad mixture of graph-theoretic and geometric methods which is promising in view of reaching really the goals of the described research program. Our already published results mainly refer to basic properties of geometric graphs as well as to applications of them. Now, within our project, we want to stay in such research directions, and within three years we want to write eight joint publications on the following topics. First, regarding fundamental properties of geometric graphs, we will investigate several classes of geometric graphs, which are extremal regarding various properties, where also colorings will play a role. Second, in applied direction we will study finite point sets with extremal diameter graphs (i.e., typical Erdös-type problems), problems in optimization (location science) and generalized partition problems for finite point sets. All these eight papers will be four-authors papers (with M. A. Perles as external coauthor). In the application we also describe the second joint three-years period (planned via "Fortsetzungsantrag"), which will be more of applied nature, with topics like: constructions of metrically extremal point sets in finite-dimensional real Banach spaces and further applications of geometric graphs in location science (i.e., optimization). Based on all this we hope that, with a deeper study of geometric graphs, our research project will forge links and create new or expand existing interactions between the mathematical fields of discrete and computational geometry, combinatorics and graph theory, convexity, as well as Minkowski geometry. Furthermore, the planned project will positively influence the work of our research groups (for example, lectures in research seminars when visiting each other, and refereeing activities regarding PhD students, with respect to all three universities).
几何图是其顶点和边分别用点和(度量)线段标识的图。已知的例子是Delaunay三角剖分或多面体的1-骨架。作为抽象关联结构的“几何化”,该概念具有许多应用,在诸如优化(位置科学中的“树”)、离散几何(例如,度量极值点集上的Erdös型问题),凸性(例如,多面体理论或恒定宽度的物体),以及各种非欧几里德几何(例如,在一般赋范空间中)。有了这个“新特拉克”,H。Martini(申请人,TU切姆尼茨/德国)与A. Kamal(申请人,巴勒斯坦阿布迪斯耶路撒冷Alquds大学教师)和Yaakov S. Kupitz(申请人,以色列耶路撒冷希伯来大学讲师)的一个三边研究项目,涉及几何图形及其应用。我们之所以选择这个课题,是因为我们都在这个领域工作多年,并共同发表了相关论文。因此,我们已经开发了一个广泛的混合图论和几何方法,这是有希望的,在真正达到所描述的研究计划的目标。我们已经发表的结果主要涉及几何图的基本性质以及它们的应用。现在,在我们的项目中,我们希望保持这样的研究方向,并在三年内就以下主题撰写八篇联合出版物。首先,关于几何图的基本性质,我们将研究几类几何图,它们在各种性质上都是极值,其中着色也将发挥作用。其次,在应用方向上,我们将研究具有极值直径图的有限点集(即,典型的Erdös型问题),优化问题(位置科学)和有限点集的广义划分问题。所有这八篇论文都是四作者论文(M。A. Perles作为外部合著者)。在申请中,我们还描述了第二个联合三年期(计划通过“Fortsetzungsantrag”),这将是更多的应用性质,与主题一样:有限维真实的Banach空间中度量极值点集的构造和几何图形在位置科学中的进一步应用(即,优化)。基于这一切,我们希望,随着对几何图形的深入研究,我们的研究项目将建立联系,创造新的或扩大离散和计算几何,组合数学和图论,凸性以及闵可夫斯基几何的数学领域之间现有的相互作用。此外,计划中的项目将对我们研究小组的工作产生积极影响(例如,相互访问时的研究研讨会演讲,以及关于所有三所大学的博士生的裁判活动)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Horst Martini其他文献

Professor Dr. Horst Martini的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Horst Martini', 18)}}的其他基金

Geometrische Graphen und Bereiche konstanter Breite
几何图形和恒定宽度区域
  • 批准号:
    5379879
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

不完备信息下基于流向图的诊断知识获取理论与方法
  • 批准号:
    51175102
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
线性码、群码和格的trellis研究
  • 批准号:
    60772131
  • 批准年份:
    2007
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

Applications of random graphs and walks
随机图和游走的应用
  • 批准号:
    RGPIN-2020-04398
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Graphs and association schemes: higher-dimensional invariants and their applications
图和关联方案:高维不变量及其应用
  • 批准号:
    22K03403
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Expanders, Sheaves on Graphs, and Applications
扩展器、图表上的滑轮和应用程序
  • 批准号:
    RGPIN-2017-04463
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Applications of random graphs and walks
随机图和游走的应用
  • 批准号:
    RGPIN-2020-04398
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
LEAPS-MPS: Foundational Connections in Number Theory, Coding Theory, Graphs, and Their Applications
LEAPS-MPS:数论、编码理论、图及其应用的基础联系
  • 批准号:
    2137661
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: Demystifying Deep Learning on Graphs: From Basic Operations to Applications
III:小:协作研究:揭秘图深度学习:从基本操作到应用
  • 批准号:
    2006861
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Chain Event Graphs and Applications to Longitudinal Studies
链事件图及其在纵向研究中的应用
  • 批准号:
    2440874
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Studentship
III: Small: Collaborative Research: Demystifying Deep Learning on Graphs: From Basic Operations to Applications
III:小:协作研究:揭秘图深度学习:从基本操作到应用
  • 批准号:
    2006844
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Research on Learning Graphs via Enumerative Queries and its Applications
枚举查询学习图及其应用研究
  • 批准号:
    20K11998
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CRII: RI: Learning novel multi-resolution representations of graphs: Applications to Brain Connectivity analysis for Alzheimer's Disease
CRII:RI:学习图形的新颖多分辨率表示:在阿尔茨海默氏病大脑连接分析中的应用
  • 批准号:
    1948510
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了