Singular Feature Extraction and Artefact Reduction in Dynamic Imaging

动态成像中的奇异特征提取和伪影减少

基本信息

项目摘要

Imaging modalities are concerned with the non-invasive recovery of some characteristic functions of an object under investigation, and hence represent a well-known application of the theory of inverse problems. For most of them, the sought-for functions are assumed to be independent of time. However, this assumption is violated in many medical and industrial applications, e.g. due to patient and organ motion or while imaging engines at working stage. In this case, the standard reconstruction techniques lead to motion artefacts in the computed images which can significantly impede a reliable diagnostics. To compensate for the motion implies to incorporate the time-dependency of the investigated object in the inverse problem associated to the static case. Adding the time dimension to the searched-for quantity does not only lead to an underdetermined problem, it also alters the nature of the static problem such as the degree of ill-posedness, the spatial resolution or lead to limited data issues. This project intends to address these points by the development of a regularization theory for dynamic imaging.For this purpose, the project is divided in two parts: First, we propose to study and solve the dynamic problem for known motion. In particular, we shall analyse the effect of the motion on the ill-posedness, deal with limited data problems arising from local deformations, develop efficient and regularized inversion schemes and then study the sensitivity of the methods to the parameters of the motion model. The second part is devoted to estimate the motion directly from the motion-corrupted data and thus to extend the theory from the first step to unknown deformations. The ignorance of both motion and searched-for-quantity brings the dynamic inverse problem to be highly underdetermined. At this end, we propose to exploit the sparsity of well chosen features, for instance wavelets or contours for piecewise constant functions, which will inherently reduce the underdeterminancy of the considered problem. Altogether, the project will result in a joint motion estimation and image reconstruction procedure which reduces the motion artefacts in the image and hence helps for the diagnosis.The project is dedicated to significantly improve the quality of reconstruction in tomographic applications affected by object related motion and to enable the non-invasive visualization of faster time-evolving processes than at present, for instance in fluid flow studies.
成像模态涉及到被研究对象的一些特征功能的非侵入性恢复,因此代表了逆问题理论的众所周知的应用。对于其中的大多数,所寻求的功能被假定为与时间无关。然而,在许多医疗和工业应用中,例如由于患者和器官运动或者当成像引擎处于工作阶段时,该假设被违反。在这种情况下,标准重建技术导致计算图像中的运动伪影,这会显著妨碍可靠的诊断。为了补偿的运动意味着将时间依赖性的研究对象在与静态的情况下的逆问题。将时间维添加到搜索量中不仅会导致欠定问题,还会改变静态问题的性质,例如不适定性程度,空间分辨率或导致有限的数据问题。本计画将针对这些问题,发展一套动态影像的正则化理论。为此,本计画分为两个部分:第一,我们提出研究并解决已知运动的动态问题。特别是,我们将分析的不适定性的运动的影响,处理有限的数据问题所产生的局部变形,开发高效和正则化的反演方案,然后研究的方法的运动模型的参数的敏感性。第二部分致力于直接从运动损坏的数据中估计运动,从而将理论从第一步扩展到未知变形。运动和搜索量的忽略使得动力学反问题是高度欠定的。在这方面,我们建议利用稀疏的精心挑选的功能,例如小波或轮廓分段常数函数,这将从根本上减少所考虑的问题的不确定性。总而言之,该项目将导致联合运动估计和图像重建程序,减少图像中的运动伪影,从而有助于诊断。该项目致力于显着提高重建质量的断层扫描应用受对象相关的运动,并使非侵入性可视化的速度比目前的时间演变过程,例如在流体流动的研究。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reconstruction algorithm for 3D Compton scattering imaging with incomplete data
不完整数据的3D康普顿散射成像重建算法
Motion Compensation Strategies in Tomography
  • DOI:
    10.1007/978-3-030-57784-1_3
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Hahn
  • 通讯作者:
    B. Hahn
A motion artefact study and locally deforming objects in computerized tomography
  • DOI:
    10.1088/1361-6420/aa8d7b
  • 发表时间:
    2017-10
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    B. Hahn
  • 通讯作者:
    B. Hahn
An efficient reconstruction approach for a class of dynamic imaging operators
  • DOI:
    10.1088/1361-6420/ab178b
  • 发表时间:
    2019-08
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Bernadette N. Hahn;Megan Garrido
  • 通讯作者:
    Bernadette N. Hahn;Megan Garrido
3D Compton scattering imaging and contour reconstruction for a class of Radon transforms
一类 Radon 变换的 3D 康普顿散射成像和轮廓重建
  • DOI:
    10.1088/1361-6420/aabf0b
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    G. Rigaud;B. N. Hahn
  • 通讯作者:
    B. N. Hahn
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Bernadette Hahn-Rigaud其他文献

Professorin Dr. Bernadette Hahn-Rigaud的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr. Bernadette Hahn-Rigaud', 18)}}的其他基金

Dynamic Inverse Problems in Magnetic Particle Imaging (D-MPI)
磁粒子成像中的动态反问题 (D-MPI)
  • 批准号:
    426078691
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Robust Feature Extraction for Visual Localization using Map-based 360-degree Image Transformation
使用基于地图的 360 度图像转换进行视觉定位的鲁棒特征提取
  • 批准号:
    24K20872
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Feature extraction of reaction route map by topological data analysis and its application to reactivity comparison, classification, and prediction
拓扑数据分析反应路线图特征提取及其在反应性比较、分类和预测中的应用
  • 批准号:
    23H01915
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Automated Machine Learning-Based Brain Artery Segmentation, Anatomical Prior Labeling, and Feature Extraction on MR Angiography
基于自动机器学习的脑动脉分割、解剖先验标记和 MR 血管造影特征提取
  • 批准号:
    10759721
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Self-supervised autoencoder framework for salient sensory feature extraction
用于显着感觉特征提取的自监督自动编码器框架
  • 批准号:
    2894189
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Development of postural stability evaluation method based on working motion analysis using feature extraction
基于特征提取的工作运动分析的姿势稳定性评估方法的开发
  • 批准号:
    22K14451
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Multichannel EEG Signal Feature Extraction and Analysis
多通道脑电信号特征提取与分析
  • 批准号:
    574478-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Understanding of 3-D plasma radiation structure using feature extraction from 2-D image data
使用 2-D 图像数据的特征提取来了解 3-D 等离子体辐射结构
  • 批准号:
    22K03583
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multi-Scale Feature Extraction for Spherical CNNs
球形 CNN 的多尺度特征提取
  • 批准号:
    2741382
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Decision support tool that uses novel feature extraction and machine learning approaches for early identification of Alzheimer's patients who are candidates for palliative and/or hospice care.
决策支持工具,使用新颖的特征提取和机器学习方法来早期识别适合姑息治疗和/或临终关怀的阿尔茨海默病患者。
  • 批准号:
    10383512
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Error Inclusive Programming and Common-Sense Oriented Feature Extraction for Dynamic Acquisition and Correction of Robotic Actions
错误包容编程和面向常识的特征提取,用于机器人动作的动态获取和校正
  • 批准号:
    21J10800
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了