A Novel Framework for Optimised Ensemble Classifier
优化集成分类器的新框架
基本信息
- 批准号:DP160102639
- 负责人:
- 金额:$ 18.69万
- 依托单位:
- 依托单位国家:澳大利亚
- 项目类别:Discovery Projects
- 财政年份:2016
- 资助国家:澳大利亚
- 起止时间:2016-01-01 至 2020-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project aims to develop a novel framework for creating an optimised ensemble classifier that will improve data analysis and the accuracy of many real-world applications such as document analysis, robotics and medical diagnosis. The project plans to develop and investigate novel methods for generating diverse training environment layers, base classifiers and fusion of classifiers. It also plans to design a multi-objective evolutionary algorithm-based search obtain the optimal number of layers, clusters and base classifiers. The expected outcomes of the proposed framework are advances in classifier learning. The final outcome may be novel methods which will bring in diversity during the learning of the base classifiers and provide an optimal ensemble classifier for real-world applications.
该项目旨在开发一种新的框架,用于创建优化的集成分类器,以改善数据分析和许多现实世界应用的准确性,如文件分析,机器人和医疗诊断。该项目计划开发和研究用于生成不同训练环境层、基础分类器和分类器融合的新方法。设计了一种基于多目标进化算法的搜索算法,获得最优的层数、聚类数和基分类器数。所提出的框架的预期成果是分类器学习的进步。最终的结果可能是新的方法,这将带来在学习的基础分类器的多样性,并提供一个最佳的集成分类器,为现实世界的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prof Brijesh Verma其他文献
Prof Brijesh Verma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prof Brijesh Verma', 18)}}的其他基金
A Novel Automatic Neural Network Feature Extractor
一种新型自动神经网络特征提取器
- 批准号:
DP210100640 - 财政年份:2021
- 资助金额:
$ 18.69万 - 项目类别:
Discovery Projects
Deep Learning Architecture with Context Adaptive Features for Image Parsing
用于图像解析的具有上下文自适应特征的深度学习架构
- 批准号:
DP200102252 - 财政年份:2020
- 资助金额:
$ 18.69万 - 项目类别:
Discovery Projects
An automated system for the analysis of road safety and conditions
用于分析道路安全和状况的自动化系统
- 批准号:
LP170101255 - 财政年份:2018
- 资助金额:
$ 18.69万 - 项目类别:
Linkage Projects
Smart Information Processing for Roadside Fire Risk Assessment Using Computational Intelligence and Pattern Recognition
使用计算智能和模式识别进行路边火灾风险评估的智能信息处理
- 批准号:
LP140100939 - 财政年份:2014
- 资助金额:
$ 18.69万 - 项目类别:
Linkage Projects
相似海外基金
Safe and Sustainable by Design framework for the next generation of Chemicals and Materials
下一代化学品和材料的安全和可持续设计框架
- 批准号:
10110559 - 财政年份:2024
- 资助金额:
$ 18.69万 - 项目类别:
EU-Funded
Law And Policy Framework For Remote Sensing In Maritime Enforcement
海事执法遥感法律和政策框架
- 批准号:
DP240100920 - 财政年份:2024
- 资助金额:
$ 18.69万 - 项目类别:
Discovery Projects
A Novel Surrogate Framework for evaluating THM Properties of Bentonite
评估膨润土 THM 性能的新型替代框架
- 批准号:
DP240102053 - 财政年份:2024
- 资助金额:
$ 18.69万 - 项目类别:
Discovery Projects
NESP MaC Project 4.5– Developing an Integrated Pest Management Framework for Feral Pigs in Coastal Environments 2024-2026 (NAILSMA)
NESP MaC 项目 4.5 — 为 2024-2026 年沿海环境中的野猪制定综合害虫管理框架 (NAILSMA)
- 批准号:
global : ba1e00f0-9953-4c17-b990-ba7aed84ce07 - 财政年份:2024
- 资助金额:
$ 18.69万 - 项目类别:
An interdisciplinary analytical framework for high-mountain landslides and cascading hazards: implications for communities and infrastructure
高山滑坡和级联灾害的跨学科分析框架:对社区和基础设施的影响
- 批准号:
NE/Z503502/1 - 财政年份:2024
- 资助金额:
$ 18.69万 - 项目类别:
Research Grant
Planning Grant: Developing capacity to attract diverse students to the geosciences: A public relations framework
规划补助金:培养吸引多元化学生学习地球科学的能力:公共关系框架
- 批准号:
2326816 - 财政年份:2024
- 资助金额:
$ 18.69万 - 项目类别:
Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
- 批准号:
2327435 - 财政年份:2024
- 资助金额:
$ 18.69万 - 项目类别:
Standard Grant
Integrating Self-Regulated Learning Into STEM Courses: Maximizing Learning Outcomes With The Success Through Self-Regulated Learning Framework
将自我调节学习融入 STEM 课程:通过自我调节学习框架取得成功,最大化学习成果
- 批准号:
2337176 - 财政年份:2024
- 资助金额:
$ 18.69万 - 项目类别:
Standard Grant
CAREER: Many-Body Green's Function Framework for Materials Spectroscopy
职业:材料光谱的多体格林函数框架
- 批准号:
2337991 - 财政年份:2024
- 资助金额:
$ 18.69万 - 项目类别:
Standard Grant
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
- 批准号:
2338559 - 财政年份:2024
- 资助金额:
$ 18.69万 - 项目类别:
Standard Grant