ダンベル型グラフェンナノリボンの電子物性解析に基づく高感度ひずみセンサの開発

基于哑铃形石墨烯纳米带电子特性分析的高灵敏度应变传感器的开发

基本信息

  • 批准号:
    19J12755
  • 负责人:
  • 金额:
    $ 1.47万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2019
  • 资助国家:
    日本
  • 起止时间:
    2019-04-25 至 2021-03-31
  • 项目状态:
    已结题

项目摘要

The gradient Schottky barrier around the atomic seamless interface can be controlled by applying appropriate strain and the stable electronic performance of dumbbell-shape graphene nanoribbon (DS-GNR)-base strain sensors can be obtained regardless of the width of the graphene nanoribbon (GNR) in the sensing segment of DS-GNR. The optimized structure of DS-GNR with metallic-metallic interface around the jointed area exhibits stable piezoresistive property in the narrow segment at lower strain range. It is deemed to the disappearance of the Schottky barrier. However, the complicated strain-induced change behavior appeared in the metallic-semiconductive interface due to the existence of the gradient Schottky barrier around the jointed area at low strain range. The single GNR possesses a large strain range as proved by several previous researchers. In this study, the author found that the large gradient Schottky barrier can be minimized by applying an appropriate tensile strain and the stable performance of DS-GNR with metallic-semiconductive interface can be attained at a larger strain range.The analysis results in this study indicate that it has a great potential to apply DS-GNRs for development of highly sensitive, stable, and reliable next-generation wearable strain sensors for real time health monitoring and smart point of care devices. The strain-induced change of electronic properties of DS-GNR can be applied on other specific applications such as bio-chemical sensors for gas- and viruses- detecting and artificial neuro network by mimicking the human synapse signal.
通过施加适当的应变,可以控制原子无缝界面周围的梯度肖特基势垒,从而使哑铃型石墨烯纳米颗粒(DS-GNR)应变传感器具有稳定的电学性能,而与DS-GNR传感段中石墨烯纳米颗粒(GNR)的宽度无关.优化后的DS-GNR结构在较低的应变范围内,在窄段内具有稳定的压阻特性。这被认为是肖特基势垒的消失。但在低应变范围内,由于金属-陶瓷界面处存在梯度肖特基势垒,界面处出现了复杂的应变诱导变化行为。单个GNR具有很大的应变范围,这已经被一些先前的研究者所证实。研究发现,通过施加适当的拉伸应变,可以使大梯度肖特基势垒最小化,从而使具有金属-金属界面的DS-GNR在更大的应变范围内获得稳定的性能,这表明DS-GNR在开发高灵敏度、稳定性、可靠的下一代可穿戴应变传感器,用于真实的时间健康监测和智能床旁设备。DS-GNR的应变诱导的电子性质的变化可以应用于其他特定的应用,例如用于气体和病毒检测的生物化学传感器以及通过模仿人类突触信号的人工神经网络。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A First Principle Study on the Localized Electronic Band Structure of a Single Long Graphene Nanoribbon with Graphene Electrodes
石墨烯电极单条长石墨烯纳米带局域电子能带结构的第一性原理研究
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eri Kiyoshige;Mai Kabayama;Yasushi Takeya;Yoichi Takami;Shuko Takeda;Yasuyuki Gondo;Hiromi Rakugi;Kei Kamide.;Qinqiang Zhang;Qinqiang Zhang
  • 通讯作者:
    Qinqiang Zhang
Theoretical Study of Heterojunction-Like Electronic Properties Between a Semiconductive Graphene Nanoribbon and a Metallic Graphene for Highly Sensitive Strain Sensors
用于高灵敏应变传感器的半导体石墨烯纳米带和金属石墨烯之间的类异质结电子特性的理论研究
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Takuya Kudo ;Qinqiang Zhang ;Ken Suzuki ;Hideo Miura;Qinqiang Zhang
  • 通讯作者:
    Qinqiang Zhang
Theoretical Study of the Edge Effect of Dumbbellshape Graphene Nanoribbon with a Dual Electronic Properties by First-principle Calculations
双电子哑铃形石墨烯纳米带边缘效应的第一性原理计算理论研究
10.1115/IMECE2020-23782A First-principles Study on the Strain-induced Localiz10.1115/IMECE2020-23782ed Electronic Properties of Dumbbell-shape Graphene Nanoribbon for Highly Sensitive Strain Sensors
10.1115/IMECE2020-23782A 高灵敏应变传感器哑铃形石墨烯纳米带应变诱导局部化电子特性的第一性原理研究10.1115/IMECE2020-23782ed
Theoretical Study of the Edge Effect of Dumbbell-shape Graphene Nanoribbon with a Dual Electronic Property by First-principle Calculations
双电子哑铃形石墨烯纳米带边缘效应的第一性原理计算理论研究
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eri Kiyoshige;Mai Kabayama;Yasushi Takeya;Yoichi Takami;Shuko Takeda;Yasuyuki Gondo;Hiromi Rakugi;Kei Kamide.;Qinqiang Zhang
  • 通讯作者:
    Qinqiang Zhang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

張 秦強其他文献

蒸気輸送法による GeS 結晶化の温度依存性
气相传输法 GeS 结晶的温度依赖性
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Krishnanand Mavinkurve Ujjal ,Tafrishi Seyed Amir ;Kanada Ayato ;Yamamoto Motoji;柴田健生,タミン オスウェル,岡本俊哉,永井萌土,柴田隆行;張 秦強
  • 通讯作者:
    張 秦強

張 秦強的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

FuSe-TG: Atomically Precise Graphene Nanoribbon-based Transistors: Materials, Devices, Circuits, and Systems
FuSe-TG:原子级精确石墨烯纳米带晶体管:材料、器件、电路和系统
  • 批准号:
    2235143
  • 财政年份:
    2023
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Standard Grant
Establishment of a method to control the structure of catalysts using graphene nanoribbon synthesis
建立利用石墨烯纳米带合成控制催化剂结构的方法
  • 批准号:
    23K13638
  • 财政年份:
    2023
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Tuning Graphene Nanoribbon Properties with Non-hexagonal Rings
合作研究:用非六角环调节石墨烯纳米带性能
  • 批准号:
    2203660
  • 财政年份:
    2022
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Standard Grant
Collaborative Research: Tuning Graphene Nanoribbon Properties with Non-hexagonal Rings
合作研究:用非六角环调节石墨烯纳米带性能
  • 批准号:
    2204252
  • 财政年份:
    2022
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Standard Grant
Purification and edge-activation of graphene nanoribbon with chemical duality
具有化学二元性的石墨烯纳米带的纯化和边缘激活
  • 批准号:
    22K04723
  • 财政年份:
    2022
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction of Production Base of Strain-Controlled Graphene Nanoribbon-Base Bio-Sensor for Detecting Multi-Molecules in Liquid
应变控制石墨烯纳米带基液体多分子生物传感器生产基地建设
  • 批准号:
    21K18665
  • 财政年份:
    2021
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of Flexible Graphene-nanoribbon-base Biochemical Sensors with Highly Strain-controllable Selectivity and Reliability
开发具有高度应变可控选择性和可靠性的柔性石墨烯纳米带生化传感器
  • 批准号:
    21K20393
  • 财政年份:
    2021
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
I-Corps: Automated DNA testing device based on a nanopore genetic sequencer with a graphene nanoribbon
I-Corps:基于带有石墨烯纳米带的纳米孔基因测序仪的自动化 DNA 测试设备
  • 批准号:
    2135324
  • 财政年份:
    2021
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Standard Grant
Strain-Controlled Graphene-Nanoribbon-Base Biochemical Sensors with High Selectivity and Sensitivity
具有高选择性和灵敏度的应变控制石墨烯纳米带基生化传感器
  • 批准号:
    20KK0083
  • 财政年份:
    2020
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Porphyrin-Graphene Nanoribbon (PGNR) Conjugates: Solution Syntheses and Properties
卟啉-石墨烯纳米带(PGNR)缀合物:溶液合成和性质
  • 批准号:
    452509501
  • 财政年份:
    2020
  • 资助金额:
    $ 1.47万
  • 项目类别:
    WBP Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了