Porphyrin-Graphene Nanoribbon (PGNR) Conjugates: Solution Syntheses and Properties

卟啉-石墨烯纳米带(PGNR)缀合物:溶液合成和性质

基本信息

  • 批准号:
    452509501
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    WBP Fellowship
  • 财政年份:
    2020
  • 资助国家:
    德国
  • 起止时间:
    2019-12-31 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Graphene nanoribbons (GNRs) have attracted tremendous interest in recent years for their high charge carrier mobility and adjustable bandgap, making them potential to be used as carbon-based semiconductors. Controllable introduction of structural defects, such as non-hexagonal rings and heteroatoms, represents a useful strategy to tune their optoelectronic properties. Among all building blocks, porphyrin is an ideal candidate containing both of these two factors. Combining porphyrin with GNR holds great promise to create “super material”, which could benefit from advantages of each component. The applicant has over five years’ working experience in nanographene synthesis and developed one efficient method to fuse graphene molecules with porphyrin during his PhD. In this proposal, the applicant will apply the previous method to synthesize longitudinal extended porphyrin-fused graphene nanoribbons (PGNRs) and investigate their optoelectronic properties using interdisciplinary methodology. Specifically, two new types of structurally complex PGNRs will be designed and synthesized: one has porphyrin moieties embedded in the backbone of 9-atom wide GNR and the other has porphyrin units fused to the zigzag edges of chevron type GNR. Three main questions will be addressed in the current project: 1) How to synthesize PGNRs with atomically precise structures? As the exact structures of GNRs are crucial for their electronic properties and performances in devices, it’s vital to hold atomically precise control over their chemical structures. Here, a solution synthesis method will be applied, which involves rational design and synthesis of monomer building blocks and applying efficient polymerization method; 2) What are the properties of PGNRs and their advantages over their all carbon-based GNR counterparts? To answer this question, we will synthesize both normal 9-AGNRs/Chevron GNRs and PGNRs. Their optoelectronic and charge mobility properties will be compared and investigated in parallel, which will reflect the real effect of porphyrin doping; 3) What could these new PGNRs be used for? Both of these two PGNRs are highly conjugated and should have low energy gap and high charge mobility. So, they will be tried to fabricate single-molecule field-effect transistor devices. On the other hand, the porphyrin core could be coordinated with magnetic ions, which will make them promising for fabricating memory devices and spintronic devices. The results from this project will not only broaden our understanding of fundamental properties of GNRs, but also pave the way for their future applications in molecular devices.
石墨烯纳米带(GNRs)由于其高的载流子迁移率和可调的禁带宽度,在碳基半导体领域有着广阔的应用前景,近年来引起了人们极大的兴趣。可控地引入结构缺陷,如非六方环和杂原子,代表了一种有用的策略,以调整其光电性能。在所有的结构单元中,卟啉是一个理想的候选者,同时包含这两个因素。将卟啉与GNR结合起来,有望创造出“超级材料”,这将受益于每种组分的优点。申请人在纳米石墨烯合成方面有五年以上的工作经验,并在博士期间开发了一种将石墨烯分子与卟啉融合的有效方法。在该提案中,申请人将应用先前的方法来合成纵向延伸的卟啉融合石墨烯纳米带(PGNRs),并使用跨学科方法来研究其光电性质。具体而言,两种新类型的结构复杂的PGNR将被设计和合成:一个具有卟啉部分嵌入在9个原子宽的GNR的主链中,另一个具有卟啉单元融合到人字形GNR的锯齿形边缘。本项目主要研究三个问题:1)如何合成具有原子级精确结构的PGNRs?由于GNRs的精确结构对其电子特性和器件性能至关重要,因此对其化学结构进行原子级精确控制至关重要。在这里,将采用溶液合成方法,其中包括合理设计和合成单体结构单元,并采用有效的聚合方法; 2)PGNR的性质是什么,以及它们相对于所有碳基GNR的优势?为了回答这个问题,我们将合成正常的9-AGNRs/Chevron GNRs和PGNRs。它们的光电和电荷迁移率性能将进行比较和平行研究,这将反映卟啉掺杂的真实的效果; 3)这些新的PGNRs可以用于什么?这两种PGNR都是高度共轭的,并且应该具有低能隙和高电荷迁移率。因此,他们将尝试制作单分子场效应晶体管器件。另一方面,卟啉核可以与磁性离子配位,这将使它们在制备存储器件和自旋电子器件方面具有很好的应用前景。本项目的研究结果不仅拓宽了我们对纳米核的基本性质的理解,而且为纳米核在分子器件中的应用铺平了道路。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Qiang Chen其他文献

Dr. Qiang Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于MXene-Graphene异构界面相互作用的太赫兹超宽带调制机理研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
MoS2-graphene二维亚纳米通道膜构筑及溶剂传质与筛分机制研究
  • 批准号:
    22378132
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于MXene-Graphene异构界面相互作用的太赫兹超宽带调制机理研究
  • 批准号:
    62375044
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
转角In2Se3/Graphene异质结的界面调控及电子性质研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
g-C3N4/Graphene二维异质结光电阴极保护材料的构筑及应变调控光电效率研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
ZnO/Graphene复合量子点的表面特性调控、吸附作用及抗菌性能增强机制
  • 批准号:
    51802185
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
三维多孔KCu7S4@C/graphene复合材料的可控制备及其储能性质的研究
  • 批准号:
    21805247
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
超细晶graphene/Cu材料累积叠轧过程中组织演变机制和强化机制
  • 批准号:
    51701174
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
三维多孔SnS@C/graphene复合材料可控制备与储钠性能研究
  • 批准号:
    51604122
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

FuSe-TG: Atomically Precise Graphene Nanoribbon-based Transistors: Materials, Devices, Circuits, and Systems
FuSe-TG:原子级精确石墨烯纳米带晶体管:材料、器件、电路和系统
  • 批准号:
    2235143
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Establishment of a method to control the structure of catalysts using graphene nanoribbon synthesis
建立利用石墨烯纳米带合成控制催化剂结构的方法
  • 批准号:
    23K13638
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Tuning Graphene Nanoribbon Properties with Non-hexagonal Rings
合作研究:用非六角环调节石墨烯纳米带性能
  • 批准号:
    2203660
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Tuning Graphene Nanoribbon Properties with Non-hexagonal Rings
合作研究:用非六角环调节石墨烯纳米带性能
  • 批准号:
    2204252
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Purification and edge-activation of graphene nanoribbon with chemical duality
具有化学二元性的石墨烯纳米带的纯化和边缘激活
  • 批准号:
    22K04723
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction of Production Base of Strain-Controlled Graphene Nanoribbon-Base Bio-Sensor for Detecting Multi-Molecules in Liquid
应变控制石墨烯纳米带基液体多分子生物传感器生产基地建设
  • 批准号:
    21K18665
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of Flexible Graphene-nanoribbon-base Biochemical Sensors with Highly Strain-controllable Selectivity and Reliability
开发具有高度应变可控选择性和可靠性的柔性石墨烯纳米带生化传感器
  • 批准号:
    21K20393
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
I-Corps: Automated DNA testing device based on a nanopore genetic sequencer with a graphene nanoribbon
I-Corps:基于带有石墨烯纳米带的纳米孔基因测序仪的自动化 DNA 测试设备
  • 批准号:
    2135324
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Strain-Controlled Graphene-Nanoribbon-Base Biochemical Sensors with High Selectivity and Sensitivity
具有高选择性和灵敏度的应变控制石墨烯纳米带基生化传感器
  • 批准号:
    20KK0083
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Development of a method for the design of graphene nanoribbon electronic structures by applying strain and its application to multifunctional sensors.
开发一种通过施加应变设计石墨烯纳米带电子结构的方法及其在多功能传感器中的应用。
  • 批准号:
    20H02022
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了