Numerical simulations of dimensional-crossover- and frustration-driven phenomena in correlated electron systems -- renewal proposal
相关电子系统中维度交叉和挫败驱动现象的数值模拟——更新提案
基本信息
- 批准号:332790403
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2017
- 资助国家:德国
- 起止时间:2016-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Building on the results from the first funding period, we intend to further study the impact of dimensionality and frustration on the emergent phenomena in quantum spin and correlated electron systems. The ability to manipulate magnetic adatoms on metallic surfaces opens up new avenues to design and explore Kondo nanosystems. Specifically, we shall address the feasibility of generating features inherent to the Kondo lattice limit --- heavy-fermion metallicity and partial Kondo screening, induced either by a regular depletion of the impurity sites or classical frustration. Another experimentally relevant question concerns the nature of a magnetic order-disorder transition in layered Kondo heterostructures. Our next goal is to elucidate the relevance of Berry phases and their impact on the quantum phase transition in SU(N) quantum antiferromagnets with a variable number of layers. As an interesting novel research direction we will investigate if and how the exotic local excitations of the two-channel Kondo model, i.e., a Majorana mode, can acquire dispersion upon dimensional crossover. For all the above research projects, we will use unbiased numerical techniques based on the auxiliary field quantum Monte Carlo (QMC) algorithm at finite and zero temperature and/or the continuous-time QMC method.
基于第一个资助期的结果,我们打算进一步研究维度和挫折对量子自旋和相关电子系统中涌现现象的影响。 在金属表面操纵磁性吸附原子的能力为设计和探索近藤纳米系统开辟了新的途径。具体而言,我们将解决 产生Kondo晶格极限固有特征的可行性-重费米子金属性和部分Kondo屏蔽,由杂质位置的定期耗尽或经典挫折引起。另一个与实验相关的问题涉及层状近藤异质结构中磁有序-无序转变的性质。我们的下一个目标是阐明Berry相的相关性及其对具有可变层数的SU(N)量子反铁磁体的量子相变的影响。 作为一个有趣的新的研究方向,我们将研究是否和如何奇异的本地激发的双通道近藤模型,即,马约拉纳模式,可以在维度交叉时获得色散。对于所有上述研究项目,我们将使用基于辅助场量子蒙特卡罗(QMC)算法在有限和零温度和/或连续时间QMC方法的无偏数值技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Marcin Raczkowski, Ph.D.其他文献
Dr. Marcin Raczkowski, Ph.D.的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
EAGER: Numerical two-dimensional fluid simulations and finite element analysis to model an adaptive and flexible microplasma discharge system.
EAGER:数值二维流体模拟和有限元分析,用于对自适应且灵活的微等离子体放电系统进行建模。
- 批准号:
1917144 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Quantifying the relationship between the Earth?s convecting interior, plate motions, and earthquakes in Alaska using three-dimensional numerical simulations
使用三维数值模拟量化地球内部对流、板块运动和阿拉斯加地震之间的关系
- 批准号:
1736153 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
Sloping boundary layers in the deep ocean: using three-dimensional numerical simulations to help interpret one-dimensional observations
深海中的倾斜边界层:使用三维数值模拟来帮助解释一维观测结果
- 批准号:
1657791 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
NUMERICAL SIMULATIONS TO STUDY THE ROLE OF BIOMECHANICS IN TACTILE SENSATION
研究生物力学在触觉中的作用的数值模拟
- 批准号:
8364342 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Numerical Simulations of Self-Gravitating Systems Through Collision less Boltzmann Equation on Six-Dimensional Phase Space
六维相空间上无碰撞玻尔兹曼方程对自引力系统的数值模拟
- 批准号:
21654026 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
High Order and Efficient Numerical Schemes for Multi-Dimensional Hyperbolic Systems of Conservation Laws and for Simulations of Multi-Phase Fluids in Applications
守恒定律多维双曲系统和应用中多相流体模拟的高阶高效数值方案
- 批准号:
0411504 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: High Order Numerical Schemes for Multi-Dimensional Systems of Conservation Laws and for Simulations of Multi-Phase Fluids
合作研究:守恒定律多维系统和多相流体模拟的高阶数值方案
- 批准号:
0106694 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: High Order Numerical Schemes for Multi-Dimensional Systems of Conservation Laws and for Simulations of Multi-Phase Fluids
合作研究:守恒定律多维系统和多相流体模拟的高阶数值方案
- 批准号:
0107419 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Standard Grant
Numerical simulations of nonlinear dynamical systems with large degree of freedom and turbulence
大自由度和湍流非线性动力系统的数值模拟
- 批准号:
09640487 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Three Dimensional Numerical Simulations of Tornadoes
龙卷风的三维数值模拟
- 批准号:
9521759 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Continuing Grant