Pushing the frontier of simulations of two-dimensional multi-orbital fermionic lattice and Heisenberg models by fully exploiting non-abelian symmetries in tensor network states

通过充分利用张量网络状态中的非阿贝尔对称性,推动二维多轨道费米子晶格和海森堡模型模拟的前沿

基本信息

项目摘要

The interplay of spin and orbital quantum degrees of freedom in fermionic lattice models leads to highly complex competing correlated phases at low energies. For their understanding well-controlled non-perturbative methods are quintessential. A very promising new approach in that respect is provided by tensor network states (TNS) which nevertheless are extremely demanding numerically. Therefore the main focus of this project is on symmetric multi-orbital models where we aim to fully exploit all underlying abelian as well as non-abelian symmetries in order to advance TNS simulations of two dimensional (2D) lattice models far beyond the current state-of-the-art. To this end, we will utilize the recently developed QSpace tensor library that can deal with non-abelian symmetries on a generic footing. For 1D systems, this has already yielded many orders of magnitude in gain of computational efficiency. Here we will use QSpace to study the low-energy phase diagram as well as entanglement and topological properties of several paradigmatic model systems in 2D. These include N-orbital fermionic systems such as the Hubbard and tJ-model with relevance to high-Tc superconductivity, as well as derived SU(N) Heisenberg models with spin and orbital degrees of freedom that exhibit unconventional magnetism. A better computational control of these systems ultimately promises a fundamental impact on our understanding of strongly-correlated quantum many-body systems.
在费米子晶格模型中,自旋和轨道量子自由度的相互作用导致了低能量下高度复杂的竞争相关相。对于他们的理解,控制良好的非微扰方法是典型的。 张量网络态(TNS)在这方面提供了一种非常有前途的新方法,但它在数值上要求极高。因此,该项目的主要重点是对称多轨道模型,我们的目标是充分利用所有潜在的阿贝尔以及非阿贝尔对称性,以推进二维(2D)晶格模型的TNS模拟远远超出当前的最先进的。为此,我们将利用最近开发的QSpace张量库,可以处理非阿贝尔对称性的通用基础。对于1D系统,这已经在计算效率的增益方面产生了许多数量级。 在这里,我们将使用QSpace来研究2D中几个范例模型系统的低能相图以及纠缠和拓扑性质。这些包括N轨道费米子系统,如哈伯德和tJ模型与高Tc超导相关,以及衍生的SU(N)海森堡模型与自旋和轨道自由度,表现出非常规的磁性。对这些系统进行更好的计算控制,最终有望对我们理解强关联量子多体系统产生根本性的影响。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nontopological Majorana Zero Modes in Inhomogeneous Spin Ladders.
  • DOI:
    10.1103/physrevlett.122.027201
  • 发表时间:
    2018-06
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    N. Robinson;A. Altland;R. Egger;N. M. Gergs;Wei Li;D. Schuricht;A. Tsvelik;A. Weichselbaum;R. Konik
  • 通讯作者:
    N. Robinson;A. Altland;R. Egger;N. M. Gergs;Wei Li;D. Schuricht;A. Tsvelik;A. Weichselbaum;R. Konik
Thermal tensor renormalization group simulations of square-lattice quantum spin models
  • DOI:
    10.1103/physrevb.100.045110
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Han Li;Bin-Bin Chen-Bin;Ziyu Chen;J. von Delft;A. Weichselbaum;Wei Li
  • 通讯作者:
    Han Li;Bin-Bin Chen-Bin;Ziyu Chen;J. von Delft;A. Weichselbaum;Wei Li
A beginner's guide to non-abelian iPEPS for correlated fermions
  • DOI:
    10.21468/scipostphyslectnotes.25
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Benedikt Bruognolo;Jheng-Wei Li;J. Delft;A. Weichselbaum
  • 通讯作者:
    Benedikt Bruognolo;Jheng-Wei Li;J. Delft;A. Weichselbaum
Quantum many-body simulations of the two-dimensional Fermi-Hubbard model in ultracold optical lattices
超冷光学晶格中二维费米-哈伯德模型的量子多体模拟
  • DOI:
    10.1103/physrevb.103.l041107
  • 发表时间:
    2021-01-19
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Chen, Bin-Bin;Chen, Chuang;Li, Wei
  • 通讯作者:
    Li, Wei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Andreas Weichselbaum, Ph.D.其他文献

Dr. Andreas Weichselbaum, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Andreas Weichselbaum, Ph.D.', 18)}}的其他基金

Non-abelian symmetries in the simulation of strongly-correlated quantum many-body systems based on tensor networks
基于张量网络的强相关量子多体系统模拟中的非阿贝尔对称性
  • 批准号:
    269015890
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Fellowships
Dynamical effects and non-equilibrium in correlated quantum systems within the framework of matrix product states and renormalization group
矩阵乘积态和重正化群框架内相关量子系统的动力学效应和非平衡
  • 批准号:
    183054568
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

我国低碳转型的经济学传导机制及政策优化仿真研究:基于行业和地区视角
  • 批准号:
    71173048
  • 批准年份:
    2011
  • 资助金额:
    43.0 万元
  • 项目类别:
    面上项目

相似海外基金

Doctoral Dissertation Research: A Syndrome of Care: The New Sciences of Survivorship at the Frontier of Medical Rescue
博士论文研究:护理综合症:医疗救援前沿的生存新科学
  • 批准号:
    2341900
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Understanding mosquito smell system: a new frontier in mosquito control
了解蚊子的气味系统:蚊子控制的新领域
  • 批准号:
    DP240103188
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Computational design of frontier materials for sustainable technologies
可持续技术前沿材料的计算设计
  • 批准号:
    FL230100176
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Australian Laureate Fellowships
Gender and Precarity at the Energy Frontier
能源前沿的性别与不稳定
  • 批准号:
    EP/Z000661/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Engineered topological nanostructures – a new frontier in materials design
工程拓扑纳米结构——材料设计的新前沿
  • 批准号:
    DP240100238
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
SG: Species Distribution Modeling on the A.I. frontier: Deep generative models for powerful, general and accessible SDM
SG:人工智能上的物种分布建模
  • 批准号:
    2329701
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Dynamic connectivity: a research and educational frontier for sustainable environmental management under climate and land use uncertainty
职业:动态连通性:气候和土地利用不确定性下可持续环境管理的研究和教育前沿
  • 批准号:
    2340161
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Diamane: A New Frontier in Materials Science
钻石烷:材料科学的新前沿
  • 批准号:
    DP230100542
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Investigating the agency of Aboriginal Frontier War memorials
调查原住民边境战争纪念碑的机构
  • 批准号:
    DE230101072
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Physics Frontier Center for Living Systems
生命系统物理前沿中心
  • 批准号:
    2317138
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了