Band Structure and Transport in Low-Dimensional Semiconductor Hole Systems
低维半导体空穴系统中的能带结构和输运
基本信息
- 批准号:336985961
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The past years have witnessed an enormously increasing interest regarding spin-orbit coupling (SOC) in two-dimensional (2D) semiconductor systems. The present project focuses in particular on hole-systems which are special for several reasons. On the one hand, the large effective mass of holes compared to conduction band electrons diminishes the kinetic term such that contributions from SOC become more important; thereby, the SOC can be strong compared to n-type systems. On the other hand, the p-wave character of the heavy (HH) and light hole (LH) states reduces the hyperfine interaction of the carrier spin with the nuclei. This allows for long spin relaxation(SR)/dephasing times. All these features facilitate a very effective manipulation of carrier spins. This proposal is about studying different challenging aspects of p-type systems. One of them is the analysis of SR of carries in strained zinc-blende (ZB) type and wurtzite (WZ) type hole system. The goal is to minimize this SR or even find persistent spin states, in respect of building spintronics applications. Recently, we supplied proof for the existence of a persistent spin helix and the needed conditions in 2D ZB electron systems for most general growth directions of the semiconductor heterostructure. Inspired by this findings, we would like to answer the question, whether spin preserving symmetries in 2D hole gases (2DHG) also arise in systems with growth directions other than [001]. The analysis of SR is directly linked to the conduction properties in such a 2DHG which will be approached by calculating weak (anti)localization (WL/WAL). The WL/WAL has proved to be one important tool for probing SOC in experiments. The analysis will take into account the full symmetry of the SO field, going beyond the theory by Pikus et al. or Iordanskii et al. To have a clear understanding of the link between WL/WAL and SR, magnetoconductivity has to be studied. This brings us to the next nontrivial question to be answered in this project, namely, how the effective g-factor in the Zeeman term looks like if we consider SOC effects and confinement. Furthermore, since the g-factor strongly depends on the HH-LH subband splitting, it is important to comprise strain effects, which significantly influence the energy spacing. Further directions of work include the study of Zitterbewegung in hole systems including strain and linear in k Dresselhaus SOC terms for the 2DHG which have been neglected so far but have been shown recently to be significant. The wave packet dynamics will be simulated in realistic sample geometries. The developed models to be used will also take account of heterostructure interfaces which can cause dominant contributions to HH spin splitting as recently shown by Durnev et al.
在过去的几年里,人们对二维(2D)半导体系统中的自旋-轨道耦合(SOC)的兴趣极大地增加。本项目特别侧重于孔系统,这是特殊的几个原因。一方面,与导带电子相比,空穴的大有效质量减少了动力学项,使得来自SOC的贡献变得更重要;因此,SOC与n型系统相比可以更强。另一方面,重空穴(HH)和轻空穴(LH)态的p波特性降低了载流子自旋与原子核的超精细相互作用。这允许长的自旋弛豫(SR)/失相时间。所有这些特征有助于非常有效地操纵载流子自旋。这个提议是关于研究p型系统的不同挑战性方面。其中之一是对应变锌钛矿(ZB)型和纤锌矿(WZ)型空穴系统中载流子的SR进行了分析。我们的目标是最小化这个SR,甚至找到持久的自旋态,在建设自旋电子学应用方面。最近,我们提供了一个持久的自旋螺旋的存在的证明和所需的条件,在二维ZB电子系统的半导体异质结构的最一般的生长方向。受这一发现的启发,我们想回答这个问题,是否在二维空穴气体(2DHG)中的自旋保持对称性也出现在生长方向不是[001]的系统中。SR的分析直接关联到这样的2DHG中的传导特性,其将通过计算弱(反)局部化(WL/WAL)来接近。WL/WAL已被证明是一个重要的工具,在实验上探测SOC。分析将考虑到完全对称的SO场,超越了Pikus等人或Iordanskii等人的理论。为了清楚地了解WL/WAL和SR之间的联系,必须研究磁导率。这将我们带到了本项目中要回答的下一个重要问题,即,如果我们考虑SOC效应和约束,塞曼项中的有效g因子是什么样子的。此外,由于g因子强烈地依赖于HH-LH子带分裂,因此重要的是包括应变效应,其显著地影响能量间隔。进一步的工作方向包括Zitterbewegung孔系统的研究,包括应变和线性在k Dresselhaus SOC条款的2DHG已被忽视,但最近已被证明是显着的。波包动力学将在现实的样品几何形状进行模拟。所开发的模型也将考虑异质结界面,这可能会导致主导贡献HH自旋分裂最近所示的Durnev等人。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ultralong spin lifetimes in one-dimensional semiconductor nanowires
- DOI:10.1063/1.5096970
- 发表时间:2018-09
- 期刊:
- 影响因子:4
- 作者:F. Dirnberger;M. Kammermeier;J. Konig;M. Forsch;P. E. F. Junior;T. Campos;J. Fabian;J. Schliemann;C. Schuller;T. Korn;Paul Thomas Wenk;D. Bougeard
- 通讯作者:F. Dirnberger;M. Kammermeier;J. Konig;M. Forsch;P. E. F. Junior;T. Campos;J. Fabian;J. Schliemann;C. Schuller;T. Korn;Paul Thomas Wenk;D. Bougeard
Driven Hofstadter butterflies and related topological invariants
驱动霍夫施塔特蝴蝶和相关拓扑不变量
- DOI:10.1103/physrevb.100.165411
- 发表时间:2019
- 期刊:
- 影响因子:3.7
- 作者:Martin Wackerl;Paul Wenk;John Schliemann
- 通讯作者:John Schliemann
Persistent spin textures and currents in wurtzite nanowire-based quantum structures
- DOI:10.1103/physrevb.101.195418
- 发表时间:2020-05-11
- 期刊:
- 影响因子:3.7
- 作者:Kammermeier, Michael;Seith, Adrian;Schliemann, John
- 通讯作者:Schliemann, John
Spin relaxation in wurtzite nanowires
- DOI:10.1103/physrevb.98.035407
- 发表时间:2018-03
- 期刊:
- 影响因子:3.7
- 作者:M. Kammermeier;Paul Thomas Wenk;F. Dirnberger;D. Bougeard;J. Schliemann
- 通讯作者:M. Kammermeier;Paul Thomas Wenk;F. Dirnberger;D. Bougeard;J. Schliemann
In-plane magnetoelectric response in bilayer graphene
- DOI:10.1103/physrevb.100.075421
- 发表时间:2019-05
- 期刊:
- 影响因子:3.7
- 作者:M. Kammermeier;Paul Thomas Wenk;U. Zulicke
- 通讯作者:M. Kammermeier;Paul Thomas Wenk;U. Zulicke
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Paul Thomas Wenk其他文献
Dr. Paul Thomas Wenk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Reveal of thermal transport in disordered materials with local order and hierarchical structure by topological and network approaches
通过拓扑和网络方法揭示具有局部有序和分层结构的无序材料中的热传输
- 批准号:
23H01360 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Precise Control of Ge Nanosheet Channel Structure and Investigation of Carrier Transport through vdW Contacts
Ge纳米片通道结构的精确控制和通过vdW接触的载流子传输研究
- 批准号:
23H01474 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
A new view of the thermal structure of continental mountain ranges: the importance of igneous heat transport
大陆山脉热结构的新观点:火成热输送的重要性
- 批准号:
NE/W00562X/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Local Structure-based Optimal Transport for Large-Scale Applications
适用于大规模应用的基于局部结构的最佳传输
- 批准号:
23K11243 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Electronic structure theory: Approximations to the exchange-correlation energy and models for electron transport
电子结构理论:交换关联能的近似和电子传输模型
- 批准号:
RGPIN-2016-04862 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Structure, function, and pharmacology of neuronal membrane transport proteins
神经元膜转运蛋白的结构、功能和药理学
- 批准号:
10403716 - 财政年份:2021
- 资助金额:
-- - 项目类别:
How Does 3' UTR Secondary Structure Program mRNA Transport in Myelination?
3 UTR 二级结构如何控制髓鞘形成中的 mRNA 运输?
- 批准号:
10288149 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Using Spacer Molecular Structure to Control Energetics, Stability, Charge-Carrier Transport, and Photovoltaic Performance in 2D Organic Metal Halide Perovskites
利用间隔分子结构控制二维有机金属卤化物钙钛矿的能量、稳定性、载流子传输和光伏性能
- 批准号:
2102257 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Vibrational Structure and Thermal Transport in Statically and Dynamically Disordered Crystals
静态和动态无序晶体中的振动结构和热传输
- 批准号:
2025013 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
CAS: Collaborative Research: Boronium Ionic Liquids - Impact of Structure on Chemistry, Electrochemical Stability, Ion Dynamics, and Charge Transport
CAS:合作研究:硼离子液体 - 结构对化学、电化学稳定性、离子动力学和电荷传输的影响
- 批准号:
2102978 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant