K-Theory, C*-algebras and Index theory

K-理论、C*-代数和指数理论

基本信息

项目摘要

In this proposed German-Russian research cooperation, the focus lies in K-theory of C*-algebras and related topics. This ranges from twisted K-theory where recent interest stems from its proposed applications in string theory and mathematic physics over approaches to the K-theory of C*-algebras via almost flat bundles and via Burnside theory and asymptotic homomorphism, it also covers the application of K-theoretic methods to the study of boundary value problems. The methods of modern approaches to the K-theory of C*-algebras carry much further, and can be used to gain important insights into the structure of C*-algebras, and much more generally to understand new aspects of noncommutative geometry, topology, and probability theory. The central object here are Hilbert C*-modules; which will be a focus of research for approaches to conditional expectations and frames in non-commutative probability theory. The global analysis parts of these areas are extended to the study of dynamical Lefschetz formulas, thus providing a bridge to number theory. The principal investigators from Germany and Moscow have build up a large body of experience in the proposed fields; which is in many cases complementary. To make further progress, we now plan to build intensive links (and strengthen the existing ones) between the different groups in Germany and Moscow. During the project, further progress shall be made in the conceptual understanding of the underlying principles and in explicit computational results and application. For this, an intense exchange program for the participating researchers from Moscow and Germany is necessary. Funding for this exchange is the main aim of the present proposal.
在这次提出的德俄研究合作中,重点在于C*-代数的K-理论及相关课题。这范围从扭曲的K-理论,最近的兴趣源于其提出的应用在弦理论和数学物理的方法,以K理论的C*-代数通过几乎平坦的丛,并通过伯恩赛德理论和渐近同态,它也涵盖了应用K-理论的方法研究边值问题。C*-代数的K-理论的现代方法进行得更远,并可用于获得对C*-代数结构的重要见解,以及更广泛地理解非交换几何,拓扑学和概率论的新方面。这里的中心对象是希尔伯特C*-模;这将是非交换概率论中条件期望和框架方法的研究重点。这些领域的整体分析部分扩展到研究动态Lefschetz公式,从而提供了一个桥梁数论。来自德国和莫斯科的主要研究人员在拟议领域积累了大量经验;在许多情况下,这些经验是互补的。为了取得进一步的进展,我们现在计划在德国和莫斯科的不同团体之间建立密切的联系(并加强现有的联系)。在项目期间,将在对基本原理的概念理解以及明确的计算结果和应用方面取得进一步进展。为此,来自莫斯科和德国的参与研究人员的密集交流计划是必要的。本提案的主要目的是为这一交流提供资金。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Orthogonality-preserving, C*-conformal and conformal module mappings on Hilbert C*-modules
  • DOI:
    10.1016/j.jfa.2010.10.009
  • 发表时间:
    2009-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Frank;A. Mishchenko;A. Pavlov
  • 通讯作者:
    M. Frank;A. Mishchenko;A. Pavlov
Quantization of branched coverings
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Michael Frank其他文献

Professor Dr. Michael Frank的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

数学物理中精确可解模型的代数方法
  • 批准号:
    11771015
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目

相似海外基金

Operator algebras and index theory in quantum walks and quantum information theory
量子行走和量子信息论中的算子代数和索引论
  • 批准号:
    24K06756
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
K-theory of Operator Algebras and Index Theory on Spaces of Singularities
算子代数的K理论与奇点空间索引论
  • 批准号:
    2247322
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Absorbing algebras,index theory ,and noncommutative topology
吸收代数、指数论和非交换拓扑
  • 批准号:
    228065-2005
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Absorbing algebras,index theory ,and noncommutative topology
吸收代数、指数论和非交换拓扑
  • 批准号:
    228065-2005
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Absorbing algebras,index theory ,and noncommutative topology
吸收代数、指数论和非交换拓扑
  • 批准号:
    228065-2005
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Absorbing algebras,index theory ,and noncommutative topology
吸收代数、指数论和非交换拓扑
  • 批准号:
    228065-2005
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Applications of Operator Algebras and Index Theory to Analysis on Singular Spaces
算子代数和指数论在奇异空间分析中的应用
  • 批准号:
    0555831
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Absorbing algebras,index theory ,and noncommutative topology
吸收代数、指数论和非交换拓扑
  • 批准号:
    228065-2005
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
K-theory, C*-algebras and Index Theory of Elliptic Operators
椭圆算子的 K 理论、C* 代数和指数理论
  • 批准号:
    0071435
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Index Theory and K-Theory for Operator Algebras
算子代数的索引理论和 K 理论
  • 批准号:
    9704001
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了