Orbifold concepts in equivariant singularity theory
等变奇点理论中的轨道概念
基本信息
- 批准号:346364045
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Invariants of topological spaces and complex analytic varieties with actions of groups (say, finite ones) play an important role, in particular in topology, algebraic geometry and mathematical physics. The applicant and his coauthors S. M. Gusein-Zade and A. Takahashi also contributed to this research. In particular, they have described a number of symmetries between so called invertible polynomials with finite group symmetries (orbifold Landau-Ginzburg models). They have defined and studied some indices of invariant or equivariant vector fields and 1-forms and of their collections. The main objective of the project is a further development of the theory of invariants in the presence of a finite group action. The special focus will be on the orbifold setting and on orbifold type invariants. More precisely, it is planned to continue the search for symmetries between invariants of Berglund-Hübsch dual invertible polynomials (also with actions of possibly non-abelian dual groups), to study algebraic formulae for equivariant indices of 1-forms and vector fields, and to investigate orbifold analogues of the Milnor lattice. The proposed research also includes a study of generalizations of the McKay correspondence, of Chern characteristic numbers of orbifolds, and of the Orlik-Randell conjecture.
拓扑空间的不变量和具有群作用的复解析簇(例如有限群)起着重要的作用,特别是在拓扑学、代数几何和数学物理中。申请人及其共同作者S. M. Gusein-Zade和A. Takahashi也为这项研究做出了贡献。特别是,他们已经描述了一些所谓的可逆多项式与有限群对称性(轨道朗道-金兹伯格模型)之间的对称性。他们定义并研究了不变或等变向量场和1-形式及其集合的指数。该项目的主要目标是在有限群作用下进一步发展不变量理论。特别的重点将放在orbifold设置和orbifold类型不变量。更确切地说,计划继续寻找伯格伦-许布施对偶可逆多项式(也可能与非阿贝尔对偶群的作用)的不变量之间的对称性,研究1-形式和向量场的等变指数的代数公式,并研究米尔诺格的轨道类似物。拟议的研究还包括研究的McKay对应,陈省身特征数的orbifolds,和Orlik-Randell猜想的推广。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Wolfgang Ebeling其他文献
Professor Dr. Wolfgang Ebeling的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Wolfgang Ebeling', 18)}}的其他基金
Invariants of Singularities with Group Actions
群动作的奇点不变量
- 批准号:
233308117 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Homological Mirror Symmetry for Singularities
奇点的同调镜像对称
- 批准号:
123657947 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Priority Programmes
Mirrorsymmetrie von K3-Flächen und Indizes von Vektorfeldern
K3 表面的镜像对称性和矢量场指数
- 批准号:
5246380 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Priority Programmes
相似海外基金
The efficacy of a computing-concepts video library for students and peer tutors in multidisciplinary contexts
计算概念视频库在多学科背景下对学生和同伴导师的功效
- 批准号:
2337253 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Postdoctoral Fellowship: STEMEdIPRF: Understanding instructor and student concepts of race to measure the prevalence of race essentialism in biology education
博士后奖学金:STEMEdIPRF:了解教师和学生的种族概念,以衡量生物教育中种族本质主义的流行程度
- 批准号:
2327488 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
ART: Accelerating Research Translation in Southern Mississippi from Concepts to Careers
艺术:加速密西西比州南部从概念到职业的研究转化
- 批准号:
2331378 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Cooperative Agreement
The efficacy of a computing-concepts video library for students and peer tutors in multidisciplinary contexts
计算概念视频库在多学科背景下对学生和同伴导师的功效
- 批准号:
2337252 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Explainable Medical Image Reports Generation Via Visual Concepts
通过视觉概念生成可解释的医学图像报告
- 批准号:
24K20795 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
AF:RI:Small: Fairness in allocation and machine learning problems: algorithms and solution concepts
AF:RI:Small:分配公平性和机器学习问题:算法和解决方案概念
- 批准号:
2334461 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
The efficacy of a computing-concepts video library for students and peer tutors in multidisciplinary contexts
计算概念视频库在多学科背景下对学生和同伴导师的功效
- 批准号:
2337251 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
The efficacy of a computing-concepts video library for students and peer tutors in multidisciplinary contexts
计算概念视频库在多学科背景下对学生和同伴导师的功效
- 批准号:
2337254 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Mid-scale RI-EW: Concepts for a Full-Scale Wave Flume for Coastal Resilience and Adaptation; Newark, Delaware; 16 May 2023
会议:中型 RI-EW:用于沿海恢复和适应的全尺寸波浪水槽概念;
- 批准号:
2309107 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Learning of education Threshold Concepts through educational development
通过教育发展学习教育阈值概念
- 批准号:
23K12795 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists