Improper Gaussian signaling schemes for interference-limited communications

用于干扰受限通信的不正确的高斯信令方案

基本信息

项目摘要

This proposal aims at developing novel signaling schemes for interference-limited mobile communication networks. Already today, multiuser interference presents the major limiting factor of the end-to-end performance in wireless communications. In pursuit of efficient interference management schemes, current research focuses on interference coordination by means of a joint precoder design that exploits the channel state information.The vast majority of these works assumes that the transmitted signals are distributed as proper Gaussian random signals, which are known to be optimal when the system is not interference-limited. Recently, alternative signaling schemes that deviate from these standard assumptions have been proposed in the literature. It has been shown that the transmission of improper Gaussian signals, whose real and imaginary parts are correlated and/or have unequal power, outperform proper Gaussian signals in various interference-limited networks.This project will study improper signaling schemes for different interference-limited networks. It has the following objectives:- To provide insights on when improper signaling enables better performance than its proper counterpart. To this end, we will focus on single-antenna and partially connected interference channels, where the analysis is tractable and permits insights that can be extended to more general scenarios. - To design algorithms that optimize the transmission parameters for general interference channels. An improper signaling scheme contains not only the parameters associated with a proper scheme, but also additional ones that describe the impropriety of the signal, which makes the optimization more challenging.- To apply improper signaling to underlay cognitive radio scenarios, which can be regarded as a paradigm for low-cooperative multiuser networks. In these scenarios, the interference is managed by setting interference constraints, so that its effect can be upper-bounded and thereby require less cooperation. We will explore new interference constraints taking impropriety into account, as well as the optimization of the transmission parameters subject to these constraints.- To evaluate the performance of the devised schemes on a real hardware testbed. We will assess the impact of real-world impairments on the performance of improper signaling, such as channel estimation errors, imperfect synchronization, and dirty radio-frequency effects.
该提议旨在开发用于干扰受限的移动的通信网络的新颖的信令方案。如今,多用户干扰已经成为无线通信中端到端性能的主要限制因素。为了寻求有效的干扰管理方案,目前的研究主要集中在利用信道状态信息的联合预编码器设计来进行干扰协调,这些工作中的绝大多数假设传输信号是高斯随机信号,当系统不受干扰限制时,高斯随机信号是最优的。最近,文献中已经提出了偏离这些标准假设的替代信令方案。已有研究表明,在各种干扰受限网络中,真实的和虚部相关和/或功率不等的非正常高斯信号的传输性能优于正常高斯信号。它具有以下目标:-提供关于不正确的信令何时能够比其正确的对应物实现更好的性能的见解。为此,我们将专注于单天线和部分连接的干扰信道,其中的分析是易于处理的,并允许可以扩展到更一般的情况下的见解。- 针对一般干扰信道设计优化传输参数的算法。不正确的信令方案不仅包含与正确方案相关联的参数,还包含描述信号不正确的其他参数,这使得优化更具挑战性。将不适当的信令应用到认知无线电场景中,这可以被视为低协作多用户网络的一个范例。在这些场景中,通过设置干扰约束来管理干扰,使得其效果可以是有上限的,从而需要较少的合作。我们将探索新的干扰约束,考虑到不适当的,以及传输参数的优化受这些约束。在一个真实的硬件测试平台上对所设计的方案进行性能评估。我们将评估真实世界的损害对不正确的信令性能的影响,如信道估计误差,不完美的同步,和肮脏的射频效应。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Energy-efficient Design for Underlay Cognitive Radio Using Improper Signaling
Benefits of Improper Signaling for Overlay Cognitive Radio
覆盖认知无线电的不正确信令的好处
Improper Signaling for SISO Two-User Interference Channels With Additive Asymmetric Hardware Distortion
  • DOI:
    10.1109/tcomm.2019.2939310
  • 发表时间:
    2019-01
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    M. Soleymani;C. Lameiro;I. Santamaría;P. Schreier
  • 通讯作者:
    M. Soleymani;C. Lameiro;I. Santamaría;P. Schreier
Improper Gaussian Signaling for the $K$-User MIMO Interference Channels With Hardware Impairments
  • DOI:
    10.1109/tvt.2020.3015558
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    M. Soleymani;I. Santamaría;P. Schreier
  • 通讯作者:
    M. Soleymani;I. Santamaría;P. Schreier
Improper Gaussian Signaling for Multiple-Access Channels in Underlay Cognitive Radio
  • DOI:
    10.1109/tcomm.2018.2880765
  • 发表时间:
    2017-11
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    C. Lameiro;I. Santamaría;P. Schreier
  • 通讯作者:
    C. Lameiro;I. Santamaría;P. Schreier
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Peter Schreier, Ph.D., since 7/2020其他文献

Professor Peter Schreier, Ph.D., since 7/2020的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

强磁场下基于Hylleraas-Gaussian基的双电子双原子分子的谱结构
  • 批准号:
    11504315
  • 批准年份:
    2015
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Gaussian Processes for Scientific Machine Learning: Theoretical Analysis and Computational Algorithms
职业:科学机器学习的高斯过程:理论分析和计算算法
  • 批准号:
    2337678
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
  • 批准号:
    2420358
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
REAGAN - Real-life applications with Gaussian boson sampling
REAGAN - 高斯玻色子采样的现实应用
  • 批准号:
    EP/Y029631/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Gaussian Process Emulation for Mathematical Models of the Heart
心脏数学模型的高斯过程仿真
  • 批准号:
    2894114
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Development of flood prediction method using particle filter and gaussian process regression
使用粒子滤波器和高斯过程回归开发洪水预测方法
  • 批准号:
    23K04052
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
  • 批准号:
    2348163
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Applications of Algebraic Geometry to Multivariate Gaussian Models
代数几何在多元高斯模型中的应用
  • 批准号:
    2306672
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Understanding Laguerre-Gaussian laser-plasma interactions for applications in inertial fusion
了解拉盖尔-高斯激光-等离子体相互作用在惯性聚变中的应用
  • 批准号:
    2887040
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Collaborative Research: Adaptive Data Assimilation for Nonlinear, Non-Gaussian, and High-Dimensional Combustion Problems on Supercomputers
合作研究:超级计算机上非线性、非高斯和高维燃烧问题的自适应数据同化
  • 批准号:
    2403552
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Gaussian Process Emulation for Mathematical Models of the Heart
心脏数学模型的高斯过程仿真
  • 批准号:
    2888280
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了