Optimization of electrocatalysts for fuel cell applications without alloying: a joint theoretical and experimental study
无合金化燃料电池应用电催化剂的优化:联合理论和实验研究
基本信息
- 批准号:355784621
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2017
- 资助国家:德国
- 起止时间:2016-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Heterogeneous catalysis, including electrocatalysis is among the pillars determining the standards of life nowadays, as catalysts are among the key materials in the modern industry. Fundamental understanding of the mechanisms controlling numerous catalytic properties is therefore of significant importance. One of the most substantial challenges in catalysis today is to develop active and stable materials capable of accelerating key reactions in fuel cells, with a prime focus being set on the oxygen reduction reaction (ORR) taking place at the cathode side of these devices. It has been estimated that increasing the ORR-activity of current Pt electrocatalysts in polymer electrolyte membrane fuel cells (PEMFCs) by ~4-5 times would reduce the necessary amount of this expensive material per vehicle to that averagely used in the catalytic convertors of normal combustion engine cars nowadays (i.e. only to ~4-5g from the current ~20g). Myriads of catalysts were reported recently to address this challenge. One of the main focuses in these efforts was elaboration of alloys of platinum with transition metals. Indeed the activity of Pt can be improved by up to 10 times (Pt-Ni system) compared to pure Pt. However, certain stability issues so far largely limit the use of them. This project uses recent experimental discoveries and fundamental understanding of how one can increase the activity of the surface of pure Pt by at least the factor of 3.5-4.5 without any alloying to design active and more stable electrocatalysts for the oxygen reduction reaction. The key fact in this approach is that it is possible to increase the activity of e.g. Pt by controlling the atom coordination near to the ORR active sites. The aim of this project is to elucidate and implement 3D quasi-open structures with the maximum density of active sites of right coordination, improved stability and local mass transport properties. Successful realization of the proposed project would not only clearly demonstrate the researchers and engineers how to improve the existing materials even without alloying; it would likely establish an entirely new methodology for the development of heterogeneous electrocatalysts based on a combination of theoretical calculations of different levels and experimental approaches which elaborate open 3D-nanostructured materials applicable in the real-world electrocatalysis.
包括电催化在内的多相催化是决定当今生活标准的支柱之一,因为催化剂是现代工业中的关键材料之一。因此,对控制许多催化性能的机制的基本理解是非常重要的。当今催化领域最大的挑战之一是开发能够加速燃料电池中关键反应的活性和稳定材料,主要关注发生在这些设备阴极侧的氧还原反应(ORR)。据估计,将聚合物电解质膜燃料电池(PEMFC)中的当前Pt电催化剂的ORR活性提高约4-5倍将使每辆车所需的这种昂贵材料的量减少到现今在正常燃烧发动机汽车的催化转化器中平均使用的量(即,从当前的约20 g减少到仅约4- 5 g)。最近报道了无数种催化剂来应对这一挑战。这些努力的主要重点之一是铂与过渡金属的合金的制作。事实上,与纯Pt相比,Pt的活性可以提高高达10倍(Pt-Ni系统)。然而,到目前为止,某些稳定性问题在很大程度上限制了它们的使用。该项目利用最近的实验发现和基本理解,即如何在没有任何合金化的情况下将纯Pt表面的活性提高至少3.5-4.5倍,以设计用于氧还原反应的活性和更稳定的电催化剂。这种方法的关键事实是,可以通过控制ORR活性位点附近的原子配位来增加例如Pt的活性。该项目的目的是阐明和实现3D准开放结构的最大密度的活性位点的正确协调,改善稳定性和局部质量传输性能。该项目的成功实现不仅将清楚地向研究人员和工程师展示如何改进现有材料,即使没有合金化;它可能会建立一种全新的方法,用于开发基于不同水平的理论计算和实验方法相结合的非均相电催化剂,这些方法阐述了适用于现实世界电催化的开放式3D纳米结构材料。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tailoring the Oxygen Reduction Activity of Pt Nanoparticles through Surface Defects: A Simple Top-Down Approach
- DOI:10.1021/acscatal.9b04974
- 发表时间:2020-03-06
- 期刊:
- 影响因子:12.9
- 作者:Fichtner, Johannes;Watzele, Sebastian;Bandarenka, Aliaksandr S.
- 通讯作者:Bandarenka, Aliaksandr S.
In-situ detection of active sites for carbon-based bifunctional oxygen reduction and evolution catalysis
- DOI:10.1016/j.electacta.2021.138285
- 发表时间:2021-04
- 期刊:
- 影响因子:6.6
- 作者:Richard W. Haid;Regina M. Kluge;T. Schmidt;A. Bandarenka
- 通讯作者:Richard W. Haid;Regina M. Kluge;T. Schmidt;A. Bandarenka
Electrochemical top-down synthesis of C-supported Pt nano-particles with controllable shape and size: Mechanistic insights and application
- DOI:10.1007/s12274-020-3281-z
- 发表时间:2020-12
- 期刊:
- 影响因子:9.9
- 作者:Batyr Garlyyev;Sebastian Watzele;J. Fichtner;J. Michalička;A. Schökel;A. Senyshyn;A. Perego;Ding Pan;H. El-Sayed;J. Macák;P. Atanassov;I. Zenyuk;A. Bandarenka
- 通讯作者:Batyr Garlyyev;Sebastian Watzele;J. Fichtner;J. Michalička;A. Schökel;A. Senyshyn;A. Perego;Ding Pan;H. El-Sayed;J. Macák;P. Atanassov;I. Zenyuk;A. Bandarenka
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Aliaksandr Bandarenka其他文献
Professor Dr. Aliaksandr Bandarenka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Aliaksandr Bandarenka', 18)}}的其他基金
Narrow Size Distribution Metal Nanoparticles Prepared via a Metal-Organic Framework Approach for Electrocatalytic Applications
通过金属有机框架方法制备的窄尺寸分布金属纳米粒子用于电催化应用
- 批准号:
448402829 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Research Grants
Tuning selectivity of oxide electrocatalysts towards electrolytic production of organic N-derivatives and H2O2
调节氧化物电催化剂对电解生产有机 N-衍生物和 H2O2 的选择性
- 批准号:
433304792 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Units
Towards the direct instrumental identification of active electrocatalytic sites using scanning tunneling microscopy
使用扫描隧道显微镜直接仪器识别活性电催化位点
- 批准号:
320825100 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Understanding the role of the electrolyte composition in electrocatalysis: How electrolytes control the catalytic activity
了解电解质成分在电催化中的作用:电解质如何控制催化活性
- 批准号:
526382812 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Oxygen reduction reaction (ORR) in fuel cells on carbon-based metal-free electrocatalysts by first-principles multiscale simulations.
通过第一原理多尺度模拟,在碳基无金属电催化剂上进行燃料电池中的氧还原反应(ORR)。
- 批准号:
22KJ2131 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Creation of Fuel-Cell Electrocatalysts by Irradiation-Induced Atomic Vacancies: Performance Control Based on Clarification of Dynamic Behavior
通过辐照诱导原子空位制备燃料电池电催化剂:基于动态行为澄清的性能控制
- 批准号:
21H04669 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)
Applicability of group 4 oxides to oxygen reduction electrocatalysts for protonic-conducting ceramic fuel cells operated at intermediate temperature
4族氧化物对中温质子传导陶瓷燃料电池氧还原电催化剂的适用性
- 批准号:
21K05257 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ultra-low loading Pt electrocatalysts based on carbon support alloys for oxygen reduction in hydrogen fuel cells and their lifetime prediction
基于碳载体合金的超低负载 Pt 电催化剂用于氢燃料电池中的氧还原及其寿命预测
- 批准号:
2604823 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
Iron atoms coordinated to Nitrogen within Carbon (Fex-N-C) electrocatalysts for Fuel Cells and Electrolysers
用于燃料电池和电解槽的碳内铁原子与氮配位 (Fex-N-C) 电催化剂
- 批准号:
2270518 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Studentship
Nanostructured Electrocatalysts for Fuel Cells
用于燃料电池的纳米结构电催化剂
- 批准号:
436229-2013 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Nanostructured Electrocatalysts for Fuel Cells
用于燃料电池的纳米结构电催化剂
- 批准号:
436229-2013 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Pt free fuel cell electrocatalysts composed of 3D graphene and non-precious metal nano particles
由3D石墨烯和非贵金属纳米颗粒组成的无铂燃料电池电催化剂
- 批准号:
17F17345 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Solar fuels from sustainable feedstock using Earth-abundant catalysts: Can light drive affordable electrocatalysts for fuel production?
使用地球上丰富的催化剂从可持续原料中获取太阳能燃料:光能否驱动经济实惠的电催化剂用于燃料生产?
- 批准号:
EP/R001367/1 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grant
Atomically controlled Pt-based electrocatalysts with high stability and ultra-low loading for PEM fuel cells
用于 PEM 燃料电池的具有高稳定性和超低负载的原子控制 Pt 基电催化剂
- 批准号:
479104-2015 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Strategic Projects - Group