Regularizations and relaxations of time-continiuous problems in plasticity

可塑性时间连续问题的正则化和松弛

基本信息

项目摘要

During the last decade, the theory of finite-strain elastoplasticity has been developed quite rapidly. The major impulses were the discovery that time-incremental problems can be formulated as minimization problems and the recent developments in the field of microstructures in infimizing sequences of functionals. While most of the mathematical theory treats the formation of microstructure via global minimization in static problems, it is desirable to derive models for the evolution of microstructure under slowly varying loads. The theory for laminate evolution in discrete time steps will be extended to the continuous time-level.This project is devoted to the study of temporal evolution models for plasticity and for systems with microstructures in general. Using spatial regularization via higher gradients and temporal regularization via viscosity we derive mathematical models that allow for an existence theory for solutions without microstructure. The temporal regularization will lead to viscous, time-continuous solutions, which converge to so-called BV solutions in the vanishing-viscosity limit. While this limiting procedure is understood in finite- dimensional systems and simple semilinear partial differential equations, the application to finite-strain plasticity is topic of the present research.The relaxation of a sequence of incremental minimization problems will be attacked using weighted energy-dissipation functionals and a development by !-convergence. Finally, it is planned to derive suitable scalings for discrete dislocation densities and pinning sites, such that the dynamic problem leads to a !-limit describing macroscopic dislocation models in the line-tension limit.
近十年来,有限应变弹塑性理论得到了较快的发展。主要的动机是发现时间增量问题可以表示为最小化问题,以及泛函加密化序列中微结构领域的最新发展。虽然大多数数学理论都是通过静力问题中的全局极小化来处理微结构的形成,但需要推导出在缓慢变化的载荷下微结构的演化模型。层合板在离散时间步长下的演化理论将扩展到连续时间水平。本项目致力于塑性和微结构系统的时间演化模型的研究。利用高梯度的空间正则化和粘性的时间正则化,我们得到了不存在微观结构解的存在理论的数学模型。时间正则化将导致粘性的、时间连续的解,这些解在消失粘性极限下收敛到所谓的BV解。虽然这个极限过程在有限维系统和简单的半线性偏微分方程组中是被理解的,但是它在有限应变塑性中的应用是本研究的主题。最后,计划为离散位错密度和钉扎位导出合适的标度,使得动力学问题导致在线-张力极限中描述宏观位错模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Alexander Mielke其他文献

Professor Dr. Alexander Mielke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Alexander Mielke', 18)}}的其他基金

Koordinatorantrag im Schwerpunktprogramm "Analysis, Modellbildung und Simulation von Mehrskalenproblemen"
协调员在优先计划“多尺度问题的分析、建模和仿真”中的应用
  • 批准号:
    5276894
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Makroskopische Dynamik in diskreten Gittern
离散晶格中的宏观动力学
  • 批准号:
    5276052
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

GRASP Conic relaxations: scalable and accurate global optimization beyond polynomials
掌握圆锥松弛:超越多项式的可扩展且准确的全局优化
  • 批准号:
    EP/X032051/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
AF: Small: Towards New Relaxations for Online Algorithms
AF:小:在线算法的新放松
  • 批准号:
    2224718
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Thresholds for the existence of efficient algorithms that solve NP- Complete problems under property testing relaxations
解决属性测试松弛下的 NP 完全问题的有效算法的存在阈值
  • 批准号:
    558705-2021
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Understanding Johari-Goldstein beta relaxations via glasses composed of dimer particles
通过二聚体粒子组成的玻璃了解 Johari-Goldstein β 弛豫
  • 批准号:
    21J10021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Thresholds for the existence of efficient algorithms that solve NP- Complete problems under property testing relaxations
解决属性测试松弛下的 NP 完全问题的有效算法的存在阈值
  • 批准号:
    558705-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Nouvelles relaxations lagrangiennes pour les problèmes de localisation avec capacité
新的放松拉格朗吉尼斯解决本地化问题和能力
  • 批准号:
    562221-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
CAREER: Anomalous Thermal Relaxations of Physical Systems
职业:物理系统的异常热弛豫
  • 批准号:
    1944539
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Effective Algorithms for Structured Nonconvex Optimization Based on First- and Second-Order Methods and Convex Relaxations
基于一阶、二阶方法和凸松弛的结构化非凸优化的有效算法
  • 批准号:
    2445089
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Studentship
Discrete Optimization: From Applications to Relaxations
离散优化:从应用到松弛
  • 批准号:
    RGPIN-2015-06746
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Approximate Scheduling Algorithms via Mathematical Relaxations
职业:通过数学松弛的近似调度算法
  • 批准号:
    1844890
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了