Time-resolved optical magnetic-circular-dichroism study of ligand-driven light-induced spin-change complexes

配体驱动光诱导自旋变化配合物的时间分辨光磁圆二色性研究

基本信息

  • 批准号:
    35800054
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2007
  • 资助国家:
    德国
  • 起止时间:
    2006-12-31 至 2011-12-31
  • 项目状态:
    已结题

项目摘要

In this project, we intend to apply our recently developed time-resolved magnetic circular dichroism (MCD) techniques to the study of metal complexes exhibiting the photomagnetic effect – light-induced excited-spin-state trapping (LIESST), where below a critical temperature one can reversibly switch the metal ion between a low-spin (LS) and high-spin (HS) state via irradiation. The target compound for the study is the well-established spin-crossover (SCO) complex Fe(II)phen2(NCS-)2 (phen = 1,10-phenanthroline). Previous investigations of related LS-Fe(II) complexes in room temperature solutions indicate that upon excitation, the LS compound reaches the HS state on a sub-picosecond time scale. This remarkable result demonstrates that the classical rules concerning spin dynamics (intersystem crossing rates) in organic systems need not apply in such metal-organic compounds. The precise excited-state dynamics dictates the quantum efficiency for magnetic switching and hence the performance of a given LIESST compound. Here we propose experiments for solid-state samples at low temperature (where the LIESST effect is operative), using paramagnetic UV-vis MCD as a sensitive probe of the spin state. We will determine the time scale for formation of the HS state using our femtosecond optical-pump MCD-probe system (in addition to transient absorption measurements), as well as addressing the role of intermediate triplet states during the LS-HS conversion. We will also further evaluate the use of continuous-wave MCD for characterising the SCO vs. temperature and LIESST effect during irradiation, and compare the results to corresponding SQUID magnetometry measurements.
在这个项目中,我们打算将我们最近开发的时间分辨磁性圆二色性(MCD)技术应用于金属配合物的研究,这些金属配合物表现出光磁效应-光诱导激发自旋态捕获(LIESST),在临界温度以下,人们可以通过照射可逆地在低自旋(LS)和高自旋(HS)状态之间切换金属离子。研究的目标化合物是已被广泛接受的自旋交叉(SCO)配合物Fe(II)phen 2(NCS-Phe)2(phen = 1,10-菲咯啉)。以前的研究相关的LS-Fe(II)配合物在室温下的解决方案表明,激发后,LS化合物达到HS状态的亚皮秒的时间尺度。这一显著的结果表明,有机体系中关于自旋动力学(系间交叉率)的经典规则不一定适用于这种金属有机化合物。精确的激发态动力学决定了磁开关的量子效率,从而决定了给定LIESST化合物的性能。在这里,我们建议在低温下(LIESST效应是操作),使用顺磁性紫外可见MCD作为自旋状态的敏感探针的固态样品的实验。我们将使用我们的飞秒光泵MCD探测系统(除了瞬态吸收测量)确定HS状态形成的时间尺度,以及解决中间三重态在LS-HS转换过程中的作用。我们还将进一步评估使用连续波MCD表征SCO与温度和照射过程中的LIESST效应,并将结果与相应的SQUID磁强计测量结果进行比较。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Mark D. Thomson, Ph.D.其他文献

Dr. Mark D. Thomson, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Mark D. Thomson, Ph.D.', 18)}}的其他基金

High-field high-bandwidth terahertz pulses: Generation in laser-excited gas plasmas and coherent detection in biased-air waveguides
高场高带宽太赫兹脉冲:激光激发气体等离子体的产生和偏置空气波导中的相干检测
  • 批准号:
    137031454
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Measuring system for time and spatially resolved optical spectroscopy
时间和空间分辨光谱测量系统
  • 批准号:
    537598070
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Major Research Instrumentation
Time-resolved laser speckle contrast imaging of resting-state functional connectivity in neonatal brain
新生儿大脑静息态功能连接的时间分辨激光散斑对比成像
  • 批准号:
    10760193
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Time-resolved measurements of single-shot XFEL pulses using frequency resolved optical gating
使用频率分辨光选通对单次 XFEL 脉冲进行时间分辨测量
  • 批准号:
    23K04624
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Energy transfer at the interface of van der Waals heterostructure with time-resolved electron diffraction and optical spectroscopy
通过时间分辨电子衍射和光谱研究范德华异质结构界面的能量转移
  • 批准号:
    22KK0225
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Multi-Platform Homogeneous Multiplexed Autoantibody Assay Based on Liquid Micropiston-Enhanced Time-Resolved Forster Resonance Energy Transfer
基于液体微活塞增强时间分辨福斯特共振能量转移的多平台同质多重自身抗体测定
  • 批准号:
    10576777
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Advanced time-resolved optical sensing and imaging systems for biomedical and environmental applications
适用于生物医学和环境应用的先进时间分辨光学传感和成像系统
  • 批准号:
    RGPIN-2019-07127
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
GOALI: Advancement of Heat-Assisted Magnetic Recording Enabled by Time-Resolved Magneto-Optical Kerr Effect Metrology
GOALI:时间分辨磁光克尔效应计量技术推动热辅助磁记录的进步
  • 批准号:
    2226579
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Highly time resolved observation of creation for initial optical isomer excess with ultra sensitive optical purity measurements
通过超灵敏的光学纯度测量,对初始光学异构体过量的产生进行高度时间分辨观察
  • 批准号:
    22H01281
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Quantum Dynamical Studies of Time-resolved Nonlinear Optical Signals from Spatially Oriented Electronic Energy Transfer Complexes
空间定向电子能量传输复合物的时间分辨非线性光信号的量子动力学研究
  • 批准号:
    2102013
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Advanced time-resolved optical sensing and imaging systems for biomedical and environmental applications
适用于生物医学和环境应用的先进时间分辨光学传感和成像系统
  • 批准号:
    RGPIN-2019-07127
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了