Theory and applications of Stone-duality for quasi-Polish spaces
准波兰空间的石对偶性理论与应用
基本信息
- 批准号:18K11166
- 负责人:
- 金额:$ 2.91万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2018
- 资助国家:日本
- 起止时间:2018-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our main results this year were applications of the general theory that we developed during this project.At CCA 2022, we presented some preliminary results about coPolish rings (topological rings whose topology is coPolish), the main result being the construction of a contravariant functor from the category of coPolish rings and continuous ring homomorphisms to the category of quasi-Polish spaces that agrees with the standard construction of the spectrum of a ring for (countable) discrete rings, but results in spaces that are more manageable for computability and foundational applications when the ring is non-discrete.At CTS 2022, we presented an effective version of the classical descriptive set theory result that adding countably many closed sets to the topology of a quasi-Polish space results in a quasi-Polish space. Our construction takes a c.e. transitive relation encoding a quasi-Polish space and an enumeration of co-c.e. closed subsets of the space and outputs a c.e. transitive relation encoding the quasi-Polish space with the refined topology. Although the classical result is well-known for (quasi-) Polish spaces, to our knowledge this is the first effective proof.At CiE 2022, we presented joint work with T.Kihara and V.Selivanov that gives a detailed analysis of the enumerability of various classes of effective quasi-Polish spaces, which supersedes known results on enumerating certain classes of domains. We also showed that the subclasses of effective quasi-Polish spaces corresponding to the T1,T2, and T3 separation axioms are each (lightface) coanalytic complete.
我们今年的主要成果是我们在这个项目中开发的一般理论的应用。在CCA 2022上,我们给出了一些关于coPolish环(拓扑环为coPolish)的初步结果,主要结果是构造了一个从coPolish环和连续环同态范畴到准波兰空间范畴的逆变函子,它符合(可数)离散环环谱的标准构造。但是当环是非离散的时,其结果对于可计算性和基础应用来说更易于管理。在CTS 2022上,我们提出了经典描述集理论结果的一个有效版本,即在准波兰空间的拓扑上添加可数的闭集可以得到准波兰空间。我们的构造采用一个编码准波兰空间的c.e.传递关系和一个co-c.e.枚举。空间的闭子集,并输出一个用改进拓扑编码准波兰空间的c.e.传递关系。虽然经典的结果是众所周知的(拟)波兰空间,据我们所知,这是第一个有效的证明。在CiE 2022上,我们展示了与T.Kihara和v.s selivanov的联合工作,详细分析了各种有效准波兰空间的可枚举性,取代了已知的枚举某些类域的结果。我们还证明了T1、T2和T3分离公理对应的有效拟波兰空间的子类是各(光面)共解析完备的。
项目成果
期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ON THE COMMUTATIVITY OF THE POWERSPACE CONSTRUCTIONS
- DOI:10.23638/lmcs-15(3:13)2019
- 发表时间:2019-01-01
- 期刊:
- 影响因子:0.6
- 作者:de Brecht, Matthew;Kawai, Tatsuji
- 通讯作者:Kawai, Tatsuji
Quasi-Polish spaces as spaces of ideals
作为理想空间的准波兰空间
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:T. Horiyama;J. Itoh;C. Nara;M. de Brecht
- 通讯作者:M. de Brecht
Overt choice
公开的选择
- DOI:10.3233/com-190253
- 发表时间:2019
- 期刊:
- 影响因子:0.6
- 作者:de Brecht Matthew;Pauly Arno;Schroder Matthias
- 通讯作者:Schroder Matthias
Domain-complete and LCS-complete Spaces
- DOI:10.1016/j.entcs.2019.07.014
- 发表时间:2019-02
- 期刊:
- 影响因子:0
- 作者:Matthew de Brecht;J. Goubault-Larrecq;Xiaodong Jia;Zhenchao Lyu
- 通讯作者:Matthew de Brecht;J. Goubault-Larrecq;Xiaodong Jia;Zhenchao Lyu
Computable functors on the category of quasi-Polish spaces.
准波兰空间范畴上的可计算函子。
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Sato Yosuke;Fukasaku Ryoya;Sekigawa Hiroshi;Norihiro Kamide;M. de Brecht
- 通讯作者:M. de Brecht
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ディブレクト マシュー其他文献
ディブレクト マシュー的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
超弦/M-理论、粒子物理相关问题的研究
- 批准号:11105138
- 批准年份:2011
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Categorical Duality and Semantics Across Mathematics, Informatics and Physics and their Applications to Categorical Machine Learning and Quantum Computing
数学、信息学和物理领域的分类对偶性和语义及其在分类机器学习和量子计算中的应用
- 批准号:
23K13008 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Closing in on the one-dimensional Efimov effect through boson-fermion duality
通过玻色子-费米子对偶性接近一维 Efimov 效应
- 批准号:
23K03267 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
IIA-Heterotic duality
IIA-杂种优势二元性
- 批准号:
22KJ0581 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Creating a new theory of computer algebra with duality spaces
创建具有对偶空间的计算机代数新理论
- 批准号:
23K03076 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On the study of the duality relations of finite and symmetric multiple zeta values using symmetrization maps
利用对称图研究有限对称多zeta值的对偶关系
- 批准号:
23K12962 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Kac-Moody quantum symmetric pairs, KLR algebras and generalized Schur-Weyl duality
Kac-Moody 量子对称对、KLR 代数和广义 Schur-Weyl 对偶性
- 批准号:
EP/W022834/1 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:
Fellowship
Koszul duality and the singularity category for the enhanced group cohomology ring
增强群上同调环的 Koszul 对偶性和奇点范畴
- 批准号:
EP/W036320/1 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:
Research Grant
CAREER: Decomposition, duality and Picard groups in chromatic homotopy theory
职业:色同伦理论中的分解、对偶性和皮卡德群
- 批准号:
2239362 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:
Continuing Grant
Conformal Field Theories with Higher Spin Symmetry and Duality Invariance
具有更高自旋对称性和对偶不变性的共形场论
- 批准号:
DP230101629 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Projects
Two-photon fluorescence lifetime imaging microscopy utilizing the space-time duality
利用时空二象性的双光子荧光寿命成像显微镜
- 批准号:
10593761 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别: